Hong Nhung Nguyen, Phuoc Tho Tran, Nghiem Anh Tuan Le, Quoc Hien Nguyen, Duy Du Bui
{"title":"Synthesis of Nano Sulfur/Chitosan-Copper Complex and Its Nematicidal Effect against Meloidogyne incognita In Vitro and on Coffee Pots","authors":"Hong Nhung Nguyen, Phuoc Tho Tran, Nghiem Anh Tuan Le, Quoc Hien Nguyen, Duy Du Bui","doi":"10.5423/ppj.oa.10.2023.0145","DOIUrl":null,"url":null,"abstract":"Sulfur is one of the inorganic elements used by plants to develop and produce phytoalexin to resist certain diseases. This study reported a method for preparing a material for plant disease resistance. Sulfur nanoparticles (SNPs) stabilized in the chitosan-Cu2+ (CS-Cu2+) complex were synthesized by hydrolysis of Na2S2O3 in an acidic medium. The obtained SNPs/CS-Cu2+ complex consisting of 0.32% S, 4% CS, and 0.7% Cu (w/v), contained SNPs with an average size of ~28 nm as measured by transmission electron microscopy images. The X-ray diffraction pattern of the SNPs/CSCu2+ complex showed that SNPs had orthorhombic crystal structures. Interaction between SNPs and the CS-Cu2+ complex was also investigated by ultraviolet-visible. Results in vitro nematicidal effect of materials against Meloidogyne incognita showed that SNPs/CS-Cu2+ complex was more effective in killing second-stage juveniles (J2) nematodes and inhibiting egg hatching than that of CS and CS-Cu2+ complex. The values of LC50 in killing J2 nematodes and EC50 in inhibiting egg hatching of SNPs/CS-Cu2+ complex were 75 and 51 mg/l, respectively. These values were lower than those of CS and the CS-Cu2+ complex. The test results on the nematicidal effect against M. incognita on coffee pots showed that the SNPs/CS-Cu2+ complex was 100% effective at a concentration of 150 mg/l. Therefore, the SNPs/CS-Cu2+ complex could be considered as a biochemical material with potential for agricultural applications to control root-knot nematodes.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"48 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Pathology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5423/ppj.oa.10.2023.0145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur is one of the inorganic elements used by plants to develop and produce phytoalexin to resist certain diseases. This study reported a method for preparing a material for plant disease resistance. Sulfur nanoparticles (SNPs) stabilized in the chitosan-Cu2+ (CS-Cu2+) complex were synthesized by hydrolysis of Na2S2O3 in an acidic medium. The obtained SNPs/CS-Cu2+ complex consisting of 0.32% S, 4% CS, and 0.7% Cu (w/v), contained SNPs with an average size of ~28 nm as measured by transmission electron microscopy images. The X-ray diffraction pattern of the SNPs/CSCu2+ complex showed that SNPs had orthorhombic crystal structures. Interaction between SNPs and the CS-Cu2+ complex was also investigated by ultraviolet-visible. Results in vitro nematicidal effect of materials against Meloidogyne incognita showed that SNPs/CS-Cu2+ complex was more effective in killing second-stage juveniles (J2) nematodes and inhibiting egg hatching than that of CS and CS-Cu2+ complex. The values of LC50 in killing J2 nematodes and EC50 in inhibiting egg hatching of SNPs/CS-Cu2+ complex were 75 and 51 mg/l, respectively. These values were lower than those of CS and the CS-Cu2+ complex. The test results on the nematicidal effect against M. incognita on coffee pots showed that the SNPs/CS-Cu2+ complex was 100% effective at a concentration of 150 mg/l. Therefore, the SNPs/CS-Cu2+ complex could be considered as a biochemical material with potential for agricultural applications to control root-knot nematodes.