The 2D Boussinesq-Navier-Stokes Equations with Logarithmically Supercritical Dissipation

IF 0.8 4区 数学
Durga Jang K.c., D. Regmi, Lizheng Tao null, Jiahong Wu
{"title":"The 2D Boussinesq-Navier-Stokes Equations with Logarithmically Supercritical Dissipation","authors":"Durga Jang K.c., D. Regmi, Lizheng Tao null, Jiahong Wu","doi":"10.4208/jms.v57n1.24.06","DOIUrl":null,"url":null,"abstract":"This paper studies the global well-posedness of the initial-value problem for the 2D Boussinesq-Navier-Stokes equations with dissipation given by an operator L that can be defined through both an integral kernel and a Fourier multiplier. When the symbol of L is represented by |ξ| a(|ξ|) with a satisfying lim|ξ|→∞ a(|ξ|) |ξ|σ = 0 for any σ > 0, we obtain the global well-posedness. A special consequence is the global well-posedness when the dissipation is logarithmically supercritical.","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v57n1.24.06","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper studies the global well-posedness of the initial-value problem for the 2D Boussinesq-Navier-Stokes equations with dissipation given by an operator L that can be defined through both an integral kernel and a Fourier multiplier. When the symbol of L is represented by |ξ| a(|ξ|) with a satisfying lim|ξ|→∞ a(|ξ|) |ξ|σ = 0 for any σ > 0, we obtain the global well-posedness. A special consequence is the global well-posedness when the dissipation is logarithmically supercritical.
对数超临界耗散的二维布森斯克-纳维尔-斯托克斯方程
本文研究了二维布森斯克-纳维尔-斯托克斯方程初值问题的全局好求性,该方程的耗散由算子 L 给出,算子 L 可通过积分核和傅立叶乘法器定义。当 L 的符号用|ξ| a(|ξ|) 表示时,对于任意 σ > 0,满足 lim|ξ|→∞ a(|ξ|) |ξ|σ = 0 的条件,我们就得到了全局完好性。一个特殊的结果是当耗散为对数超临界时的全局良好性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信