The 2D Boussinesq-Navier-Stokes Equations with Logarithmically Supercritical Dissipation

IF 0.8 4区 数学
Durga Jang K.c., D. Regmi, Lizheng Tao null, Jiahong Wu
{"title":"The 2D Boussinesq-Navier-Stokes Equations with Logarithmically Supercritical Dissipation","authors":"Durga Jang K.c., D. Regmi, Lizheng Tao null, Jiahong Wu","doi":"10.4208/jms.v57n1.24.06","DOIUrl":null,"url":null,"abstract":"This paper studies the global well-posedness of the initial-value problem for the 2D Boussinesq-Navier-Stokes equations with dissipation given by an operator L that can be defined through both an integral kernel and a Fourier multiplier. When the symbol of L is represented by |ξ| a(|ξ|) with a satisfying lim|ξ|→∞ a(|ξ|) |ξ|σ = 0 for any σ > 0, we obtain the global well-posedness. A special consequence is the global well-posedness when the dissipation is logarithmically supercritical.","PeriodicalId":43526,"journal":{"name":"数学研究","volume":"3 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v57n1.24.06","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper studies the global well-posedness of the initial-value problem for the 2D Boussinesq-Navier-Stokes equations with dissipation given by an operator L that can be defined through both an integral kernel and a Fourier multiplier. When the symbol of L is represented by |ξ| a(|ξ|) with a satisfying lim|ξ|→∞ a(|ξ|) |ξ|σ = 0 for any σ > 0, we obtain the global well-posedness. A special consequence is the global well-posedness when the dissipation is logarithmically supercritical.
对数超临界耗散的二维布森斯克-纳维尔-斯托克斯方程
本文研究了二维布森斯克-纳维尔-斯托克斯方程初值问题的全局好求性,该方程的耗散由算子 L 给出,算子 L 可通过积分核和傅立叶乘法器定义。当 L 的符号用|ξ| a(|ξ|) 表示时,对于任意 σ > 0,满足 lim|ξ|→∞ a(|ξ|) |ξ|σ = 0 的条件,我们就得到了全局完好性。一个特殊的结果是当耗散为对数超临界时的全局良好性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍: Journal of Mathematical Study (JMS) is a comprehensive mathematical journal published jointly by Global Science Press and Xiamen University. It publishes original research and survey papers, in English, of high scientific value in all major fields of mathematics, including pure mathematics, applied mathematics, operational research, and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信