Interaction of Ionic Solution with Permeable Membranes: a Variational Approach

IF 0.8 4区 数学
Shi-qian Xu, Zilong Song, Robert Eisenberg null, Huaxiong Huang
{"title":"Interaction of Ionic Solution with Permeable Membranes: a Variational Approach","authors":"Shi-qian Xu, Zilong Song, Robert Eisenberg null, Huaxiong Huang","doi":"10.4208/jms.v57n1.24.02","DOIUrl":null,"url":null,"abstract":". The movement of ionic solutions is an essential part of biology and technology. Fluidics, from nano-to microfluidics, is a burgeoning area of technology which is all about the movement of ionic solutions, on various scales. Many cells, tissues, and organs of animals and plants depend on osmosis, as the movement of fluids is called in biology. Indeed, the movement of fluids through channel proteins (that have a hole down their middle) is fluidics on an atomic scale. Ionic fluids are complex fluids, with energy stored in many ways. Ionic fluid flow is driven by gradients of concentration, chemical and electrical potential, and hydrostatic pressure. In this paper, a series of sharp interface models are derived for ionic solution with permeable membranes. By using the energy variation method, the unknown flux and interface conditions are derived consistently. We start from the derivation the generic model for the general case","PeriodicalId":43526,"journal":{"name":"数学研究","volume":"66 10","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v57n1.24.02","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. The movement of ionic solutions is an essential part of biology and technology. Fluidics, from nano-to microfluidics, is a burgeoning area of technology which is all about the movement of ionic solutions, on various scales. Many cells, tissues, and organs of animals and plants depend on osmosis, as the movement of fluids is called in biology. Indeed, the movement of fluids through channel proteins (that have a hole down their middle) is fluidics on an atomic scale. Ionic fluids are complex fluids, with energy stored in many ways. Ionic fluid flow is driven by gradients of concentration, chemical and electrical potential, and hydrostatic pressure. In this paper, a series of sharp interface models are derived for ionic solution with permeable membranes. By using the energy variation method, the unknown flux and interface conditions are derived consistently. We start from the derivation the generic model for the general case
离子溶液与渗透膜的相互作用:一种变量方法
.离子溶液的流动是生物学和技术的重要组成部分。流体技术(从纳米到微流体)是一个新兴的技术领域,它涉及各种规模的离子溶液运动。许多动物和植物的细胞、组织和器官都依赖于渗透作用,这就是生物学中所说的流体运动。事实上,液体通过通道蛋白(中间有孔)的运动就是原子尺度上的流体力学。离子液体是复杂的流体,以多种方式储存能量。离子液体的流动受浓度梯度、化学势、电势和静水压力的驱动。本文推导了一系列具有渗透膜的离子溶液的尖锐界面模型。通过使用能量变化法,可以一致地推导出未知流量和界面条件。我们从推导一般情况下的通用模型开始
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍: Journal of Mathematical Study (JMS) is a comprehensive mathematical journal published jointly by Global Science Press and Xiamen University. It publishes original research and survey papers, in English, of high scientific value in all major fields of mathematics, including pure mathematics, applied mathematics, operational research, and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信