Sensitivity and feature importance of climate factors and evaluation of different machine learning models for predicting fire hotspots in Kalimantan, Indonesia
S. Nurdiati, Endar Hasafah Nugrahani, F. Bukhari, M. Najib, Denny Muliawan Sebastian, Putri Afia Nur Fallahi
{"title":"Sensitivity and feature importance of climate factors and evaluation of different machine learning models for predicting fire hotspots in Kalimantan, Indonesia","authors":"S. Nurdiati, Endar Hasafah Nugrahani, F. Bukhari, M. Najib, Denny Muliawan Sebastian, Putri Afia Nur Fallahi","doi":"10.11591/ijai.v13.i2.pp2212-2225","DOIUrl":null,"url":null,"abstract":"Hotspots as indicators of forest fires capable of quickly monitoring large areas are often predicted using various machine learning methods. However, there is still little research that analyzes the sensitivity and feature importance of each predictor that forms a machine learning prediction model. This study evaluates and compares several machine learning methods to predict hotspots in Kalimantan. Using the most accurate machine learning model, each climate factor used as a predictor is analyzed for its sensitivity and feature importance. Some of the machine learning methods used include random forest, gradient boosting, Bayesian regression, and artificial neural networks. Meanwhile, several measures of sensitivity and feature importance used are variance-based, density-based, and distribution-based sensitivity indices, as well as permutation and Shapley feature importance. Evaluation of the ML model concluded that the Bayesian linear regression model outperformed other ML models, based on RMSE and explained variance score. Meanwhile, tree-based models, such as random forest and gradient boosting, are indicative of overfit. Based on the results of sensitivity analysis and feature importance, the number of dry days is the most important feature for the Bayesian linear regression model in predicting the number of hotspots in Kalimantan.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"87 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp2212-2225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hotspots as indicators of forest fires capable of quickly monitoring large areas are often predicted using various machine learning methods. However, there is still little research that analyzes the sensitivity and feature importance of each predictor that forms a machine learning prediction model. This study evaluates and compares several machine learning methods to predict hotspots in Kalimantan. Using the most accurate machine learning model, each climate factor used as a predictor is analyzed for its sensitivity and feature importance. Some of the machine learning methods used include random forest, gradient boosting, Bayesian regression, and artificial neural networks. Meanwhile, several measures of sensitivity and feature importance used are variance-based, density-based, and distribution-based sensitivity indices, as well as permutation and Shapley feature importance. Evaluation of the ML model concluded that the Bayesian linear regression model outperformed other ML models, based on RMSE and explained variance score. Meanwhile, tree-based models, such as random forest and gradient boosting, are indicative of overfit. Based on the results of sensitivity analysis and feature importance, the number of dry days is the most important feature for the Bayesian linear regression model in predicting the number of hotspots in Kalimantan.
热点作为能够快速监测大面积森林火灾的指标,通常使用各种机器学习方法进行预测。然而,对构成机器学习预测模型的每个预测因子的灵敏度和特征重要性进行分析的研究仍然很少。本研究评估并比较了几种机器学习方法,以预测加里曼丹的热点地区。使用最准确的机器学习模型,对用作预测因子的每个气候因子的敏感性和特征重要性进行分析。使用的机器学习方法包括随机森林、梯度提升、贝叶斯回归和人工神经网络。同时,还使用了基于方差、基于密度和基于分布的灵敏度指数,以及置换和 Shapley 特征重要性等灵敏度和特征重要性度量方法。对 ML 模型进行评估后得出结论,根据 RMSE 和解释方差得分,贝叶斯线性回归模型优于其他 ML 模型。同时,基于树的模型,如随机森林和梯度提升模型,都有过拟合的迹象。根据灵敏度分析和特征重要性的结果,干旱天数是贝叶斯线性回归模型预测加里曼丹热点数量的最重要特征。