{"title":"Malaria cell identification using improved machine learning and modified deep learning architecture","authors":"Shashikiran S., S. H. D.","doi":"10.11591/ijeecs.v34.i3.pp2078-2086","DOIUrl":null,"url":null,"abstract":"Malaria continues to be a serious problem for public health because of its occurrence in tropical and subtropical areas with inadequate healthcare systems and few resources. For prompt intervention and treatment of malaria, effective and precise diagnosis is essential. Professional pathologists examine blood smear films by hand to get a microscopic diagnosis and another way they will do a rapid antigen malaria test which produces the result of 50% accuracy. Convolutional neural network (CNN) is a type of deep learning (DL) model that has been effectively used for a variety of image recognition applications. Our suggested approach uses, improved machine learning (IML) methods like support vector machine (SVM)+principal component analysis (PCA) fit, SVM+t-distributed stochastic neighbor embedding (t-SNE) fit, and CNN architecture with an accuracy of 86.23%, 88.27%, and 97.16% accuracy respectively, to combine feature extraction, data augmentation, and modify the layers by including the SVM algorithm in the final layer of the CNN architecture. The proposed method will significantly reduce pathologists' burden by automating the identification of malaria and improving diagnosis accuracy in resourceconstrained contexts","PeriodicalId":13480,"journal":{"name":"Indonesian Journal of Electrical Engineering and Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijeecs.v34.i3.pp2078-2086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Malaria continues to be a serious problem for public health because of its occurrence in tropical and subtropical areas with inadequate healthcare systems and few resources. For prompt intervention and treatment of malaria, effective and precise diagnosis is essential. Professional pathologists examine blood smear films by hand to get a microscopic diagnosis and another way they will do a rapid antigen malaria test which produces the result of 50% accuracy. Convolutional neural network (CNN) is a type of deep learning (DL) model that has been effectively used for a variety of image recognition applications. Our suggested approach uses, improved machine learning (IML) methods like support vector machine (SVM)+principal component analysis (PCA) fit, SVM+t-distributed stochastic neighbor embedding (t-SNE) fit, and CNN architecture with an accuracy of 86.23%, 88.27%, and 97.16% accuracy respectively, to combine feature extraction, data augmentation, and modify the layers by including the SVM algorithm in the final layer of the CNN architecture. The proposed method will significantly reduce pathologists' burden by automating the identification of malaria and improving diagnosis accuracy in resourceconstrained contexts
期刊介绍:
The aim of Indonesian Journal of Electrical Engineering and Computer Science (formerly TELKOMNIKA Indonesian Journal of Electrical Engineering) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the applications of Telecommunication and Information Technology, Applied Computing and Computer, Instrumentation and Control, Electrical (Power), Electronics Engineering and Informatics which covers, but not limited to, the following scope: Signal Processing[...] Electronics[...] Electrical[...] Telecommunication[...] Instrumentation & Control[...] Computing and Informatics[...]