A comparative study of YOLOv5 and YOLOv8 for corrosion segmentation tasks in metal surfaces

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2024-06-01 DOI:10.1016/j.array.2024.100351
Edmundo Casas , Leo Ramos , Cristian Romero , Francklin Rivas-Echeverría
{"title":"A comparative study of YOLOv5 and YOLOv8 for corrosion segmentation tasks in metal surfaces","authors":"Edmundo Casas ,&nbsp;Leo Ramos ,&nbsp;Cristian Romero ,&nbsp;Francklin Rivas-Echeverría","doi":"10.1016/j.array.2024.100351","DOIUrl":null,"url":null,"abstract":"<div><p>This study delves into the comparative efficacy of YOLOv5 and YOLOv8 in corrosion segmentation tasks. We employed three unique datasets, comprising 4942, 5501, and 6136 images, aiming to thoroughly evaluate the models’ adaptability and robustness in diverse scenarios. The assessment metrics included precision, recall, F1-score, and mean average precision. Furthermore, graphical tests offered a visual perspective on the segmentation capabilities of each architecture. Our results highlight YOLOv8’s superior speed and segmentation accuracy across datasets, further corroborated by graphical evaluations. These visual assessments were instrumental in emphasizing YOLOv8’s proficiency in handling complex corroded surfaces. However, in the largest dataset, both models encountered challenges, particularly with overlapping bounding boxes. YOLOv5 notably lagged, struggling to achieve the performance standards set by YOLOv8, especially with irregular corroded surfaces. In conclusion, our findings underscore YOLOv8’s enhanced capabilities, establishing it as a preferable choice for real-world corrosion detection tasks. This research thus offers invaluable insights, poised to redefine corrosion management strategies and guide future explorations in corrosion identification.</p></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"22 ","pages":"Article 100351"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590005624000171/pdfft?md5=9e4e2adc95d4bf31d6930cbc85e19fa3&pid=1-s2.0-S2590005624000171-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005624000171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into the comparative efficacy of YOLOv5 and YOLOv8 in corrosion segmentation tasks. We employed three unique datasets, comprising 4942, 5501, and 6136 images, aiming to thoroughly evaluate the models’ adaptability and robustness in diverse scenarios. The assessment metrics included precision, recall, F1-score, and mean average precision. Furthermore, graphical tests offered a visual perspective on the segmentation capabilities of each architecture. Our results highlight YOLOv8’s superior speed and segmentation accuracy across datasets, further corroborated by graphical evaluations. These visual assessments were instrumental in emphasizing YOLOv8’s proficiency in handling complex corroded surfaces. However, in the largest dataset, both models encountered challenges, particularly with overlapping bounding boxes. YOLOv5 notably lagged, struggling to achieve the performance standards set by YOLOv8, especially with irregular corroded surfaces. In conclusion, our findings underscore YOLOv8’s enhanced capabilities, establishing it as a preferable choice for real-world corrosion detection tasks. This research thus offers invaluable insights, poised to redefine corrosion management strategies and guide future explorations in corrosion identification.

YOLOv5 和 YOLOv8 在金属表面腐蚀细分任务中的比较研究
本研究深入探讨了 YOLOv5 和 YOLOv8 在腐蚀分割任务中的功效对比。我们采用了三个独特的数据集,包括 4942、5501 和 6136 幅图像,旨在全面评估模型在不同场景下的适应性和鲁棒性。评估指标包括精度、召回率、F1-分数和平均精度。此外,图形测试还从视觉角度展示了每个架构的分割能力。我们的结果凸显了 YOLOv8 在不同数据集上的卓越速度和分割精度,图形评估进一步证实了这一点。这些视觉评估有助于突出 YOLOv8 在处理复杂腐蚀表面方面的能力。不过,在最大的数据集中,两个模型都遇到了挑战,尤其是在处理重叠边界框时。YOLOv5 明显落后,难以达到 YOLOv8 设定的性能标准,尤其是在处理不规则腐蚀表面时。总之,我们的研究结果凸显了 YOLOv8 的强大功能,使其成为实际腐蚀检测任务的首选。因此,这项研究提供了宝贵的见解,有望重新定义腐蚀管理策略,并指导未来的腐蚀识别探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信