Ashraf Saad Shewail, Hala H. Zayed, Neven A. M. Elsayed
{"title":"Real-time indoor tracking for augmented reality using computer vision technique","authors":"Ashraf Saad Shewail, Hala H. Zayed, Neven A. M. Elsayed","doi":"10.11591/ijai.v13.i2.pp1845-1857","DOIUrl":null,"url":null,"abstract":"In recent times, there has been an increase in the stability and integration of augmented reality (AR) technology in everyday applications. AR relies on tracking techniques to capture the characteristics of the surrounding environment. Tracking falls into two categories: outdoor and indoor. While outdoor tracking predominantly relies on the global positioning system (GPS), it is performance indoors is hindered by imprecise GPS signals. Indoor tracking offers a solution for navigating complex indoor environments. This paper introduces an indoor tracking system that combines smartphone sensor data and computer vision using the oriented features from accelerated and segments test and rotated binary robust independent elementary features (ORB) algorithm for feature extraction, along with brute force match (BFM) and k-nearest neighbor (KNN) for matching. This approach outperforms previous systems, offering efficient navigation without relying on pre-existing maps. The system uses the A* algorithm to find the shortest path and cloud computing for data storage. Experimental results demonstrate an impressive 99% average accuracy within a 7-10 cm error range, even in scenarios with varying distances. Moreover, all users successfully reached their destinations during the experiments. This innovative model presents a promising advancement in indoor tracking, enhancing the accuracy and effectiveness of navigation in complex indoor spaces","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp1845-1857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent times, there has been an increase in the stability and integration of augmented reality (AR) technology in everyday applications. AR relies on tracking techniques to capture the characteristics of the surrounding environment. Tracking falls into two categories: outdoor and indoor. While outdoor tracking predominantly relies on the global positioning system (GPS), it is performance indoors is hindered by imprecise GPS signals. Indoor tracking offers a solution for navigating complex indoor environments. This paper introduces an indoor tracking system that combines smartphone sensor data and computer vision using the oriented features from accelerated and segments test and rotated binary robust independent elementary features (ORB) algorithm for feature extraction, along with brute force match (BFM) and k-nearest neighbor (KNN) for matching. This approach outperforms previous systems, offering efficient navigation without relying on pre-existing maps. The system uses the A* algorithm to find the shortest path and cloud computing for data storage. Experimental results demonstrate an impressive 99% average accuracy within a 7-10 cm error range, even in scenarios with varying distances. Moreover, all users successfully reached their destinations during the experiments. This innovative model presents a promising advancement in indoor tracking, enhancing the accuracy and effectiveness of navigation in complex indoor spaces