{"title":"Novel control of PV-wind-battery powered standalone power supply system based LSTM based ANN","authors":"Y. Hazarathaiah, B. Venkata, Rami Reddy","doi":"10.11591/ijpeds.v15.i2.pp1227-1234","DOIUrl":null,"url":null,"abstract":"Integrated wind-photovoltaic (PV) based standalone electric power supply systems are widely used for various applications. A battery storage system is needed to provide continuous power supply to loads despite changes in loads, wind speed, and solar irradiance. Power quality is crucial in these hybrid systems, as the battery needs to charge from surplus power when generation exceeds the load and discharge to meet load demand. A bidirectional DC to DC converter is used to connect the battery to the network, and maximum power point tracking devices with proper algorithms are incorporated for optimal utilization of PV and wind turbines. Multiple PV systems and wind turbines are considered for proper power supply system ratings. Long short-term memory (LSTM) based artificial neural network (ANN) controllers are implemented for various control units in the hybrid standalone power system. The proposed control techniques improve power quality under various situations. Results are presented using MATLAB/Simulink to evaluate the performance of the proposed method.","PeriodicalId":355274,"journal":{"name":"International Journal of Power Electronics and Drive Systems (IJPEDS)","volume":"5 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems (IJPEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijpeds.v15.i2.pp1227-1234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Integrated wind-photovoltaic (PV) based standalone electric power supply systems are widely used for various applications. A battery storage system is needed to provide continuous power supply to loads despite changes in loads, wind speed, and solar irradiance. Power quality is crucial in these hybrid systems, as the battery needs to charge from surplus power when generation exceeds the load and discharge to meet load demand. A bidirectional DC to DC converter is used to connect the battery to the network, and maximum power point tracking devices with proper algorithms are incorporated for optimal utilization of PV and wind turbines. Multiple PV systems and wind turbines are considered for proper power supply system ratings. Long short-term memory (LSTM) based artificial neural network (ANN) controllers are implemented for various control units in the hybrid standalone power system. The proposed control techniques improve power quality under various situations. Results are presented using MATLAB/Simulink to evaluate the performance of the proposed method.