Semi-supervised spectral clustering using shared nearest neighbour for data with different shape and density

Yousheng Gao, Raihah Aminuddin, Raseeda Hamzah, Li Ang, Siti Khatijah Nor Abdul Rahim
{"title":"Semi-supervised spectral clustering using shared nearest neighbour for data with different shape and density","authors":"Yousheng Gao, Raihah Aminuddin, Raseeda Hamzah, Li Ang, Siti Khatijah Nor Abdul Rahim","doi":"10.11591/ijai.v13.i2.pp2283-2290","DOIUrl":null,"url":null,"abstract":"In the absence of supervisory information in spectral clustering algorithms, it is difficult to construct suitable similarity graphs for data with complex shapes and varying densities. To address this issue, this paper proposes a Semi-supervised Spectral Clustering algorithm based on shared nearest neighbor. The proposed algorithm combines the idea of semi-supervised clustering, adding Shared Nearest Neighbor information to the calculation of the distance matrix, and using pairwise constraint information to find the relationship between two data points, while providing a portion of supervised information. Comparative experiments were conducted on artificial data sets and University of California Irvine machine learning repository datasets. The experimental results show that the proposed algorithm achieves better clustering results compared to traditional K-means and spectral clustering algorithms.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"10 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp2283-2290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the absence of supervisory information in spectral clustering algorithms, it is difficult to construct suitable similarity graphs for data with complex shapes and varying densities. To address this issue, this paper proposes a Semi-supervised Spectral Clustering algorithm based on shared nearest neighbor. The proposed algorithm combines the idea of semi-supervised clustering, adding Shared Nearest Neighbor information to the calculation of the distance matrix, and using pairwise constraint information to find the relationship between two data points, while providing a portion of supervised information. Comparative experiments were conducted on artificial data sets and University of California Irvine machine learning repository datasets. The experimental results show that the proposed algorithm achieves better clustering results compared to traditional K-means and spectral clustering algorithms.
利用共享近邻对不同形状和密度的数据进行半监督光谱聚类
在光谱聚类算法中缺乏监督信息的情况下,很难为形状复杂、密度各异的数据构建合适的相似性图。针对这一问题,本文提出了一种基于共享近邻的半监督光谱聚类算法。所提算法结合了半监督聚类的思想,在计算距离矩阵时加入了共享近邻信息,利用成对约束信息找到两个数据点之间的关系,同时提供了一部分监督信息。在人工数据集和加州大学欧文分校机器学习库数据集上进行了对比实验。实验结果表明,与传统的 K-means 聚类算法和光谱聚类算法相比,所提出的算法取得了更好的聚类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信