Dealing imbalance dataset problem in sentiment analysis of recession in Indonesia

Dinar Ajeng Kristiyanti, Samuel Ady Sanjaya, Vinsencius Christio Tjokro, Jason Suhali
{"title":"Dealing imbalance dataset problem in sentiment analysis of recession in Indonesia","authors":"Dinar Ajeng Kristiyanti, Samuel Ady Sanjaya, Vinsencius Christio Tjokro, Jason Suhali","doi":"10.11591/ijai.v13.i2.pp2060-2072","DOIUrl":null,"url":null,"abstract":"Global recession news dominates social media, particularly in Indonesia, with social news platforms on Twitter generating public responses and re-tweetings on the issue. Mining these opinions from Twitter using a sentiment analysis approach yields invaluable insights. The research stages included data collection, pre-processing, data labeling using the lexical-based method like valence aware dictionary and sentiment reasoner (VADER) and TextBlob, sampling techniques using synthetic minority oversampling technique (SMOTE) and random over sampling (ROS) before and after splitting data, and modeling using machine learning such as support vector machines (SVM), k-nearest neighbour (KNN), naive Bayes, and model evaluation. The problem is that almost 300,000 data collected from NodeXL are unbalanced. The findings show that models with balanced datasets show better model evaluation results. The sampling technique was carried out before and after splitting the data. The model evaluation results show that the Bernoulli-naive Bayes algorithm, with the VADER labeling technique, and the SMOTE sampling technique after splitting data, obtains the best accuracy of 84%, and using the ROS technique obtains an accuracy of 81%. On the other hand, with the SMOTE and ROS technique before splitting data on the SVM algorithm, it gets the best accuracy of 93% from before if only using SVM only reached 84%.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"8 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp2060-2072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global recession news dominates social media, particularly in Indonesia, with social news platforms on Twitter generating public responses and re-tweetings on the issue. Mining these opinions from Twitter using a sentiment analysis approach yields invaluable insights. The research stages included data collection, pre-processing, data labeling using the lexical-based method like valence aware dictionary and sentiment reasoner (VADER) and TextBlob, sampling techniques using synthetic minority oversampling technique (SMOTE) and random over sampling (ROS) before and after splitting data, and modeling using machine learning such as support vector machines (SVM), k-nearest neighbour (KNN), naive Bayes, and model evaluation. The problem is that almost 300,000 data collected from NodeXL are unbalanced. The findings show that models with balanced datasets show better model evaluation results. The sampling technique was carried out before and after splitting the data. The model evaluation results show that the Bernoulli-naive Bayes algorithm, with the VADER labeling technique, and the SMOTE sampling technique after splitting data, obtains the best accuracy of 84%, and using the ROS technique obtains an accuracy of 81%. On the other hand, with the SMOTE and ROS technique before splitting data on the SVM algorithm, it gets the best accuracy of 93% from before if only using SVM only reached 84%.
处理印度尼西亚经济衰退情绪分析中的不平衡数据集问题
全球经济衰退的新闻在社交媒体上占据主导地位,尤其是在印度尼西亚,Twitter 上的社交新闻平台引发了公众对这一问题的回应和转发。使用情感分析方法从推特上挖掘这些观点可以获得宝贵的见解。研究阶段包括数据收集、预处理、使用基于词法的方法(如价值感知词典和情感推理器(VADER)和 TextBlob)进行数据标注、在分割数据前后使用合成少数群体过度采样技术(SMOTE)和随机过度采样(ROS)进行采样、使用机器学习(如支持向量机(SVM)、k-近邻(KNN)、奈夫贝叶斯)进行建模和模型评估。问题在于,从 NodeXL 收集的近 30 万条数据是不平衡的。研究结果表明,使用平衡数据集的模型能获得更好的模型评估结果。在分割数据之前和之后都采用了抽样技术。模型评估结果显示,采用 VADER 标记技术和 SMOTE 采样技术的伯努利无性贝叶斯算法在分割数据后获得了 84% 的最佳准确率,而采用 ROS 技术则获得了 81% 的准确率。另一方面,在使用 SVM 算法分割数据之前使用 SMOTE 和 ROS 技术,如果仅使用 SVM 算法,准确率仅为 84%,而使用 VADER 标签技术和 SMOTE 采样技术,准确率可达 93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信