Néron models of pseudo-Abelian varieties

Otto Overkamp
{"title":"Néron models of pseudo-Abelian varieties","authors":"Otto Overkamp","doi":"10.4171/rsmup/145","DOIUrl":null,"url":null,"abstract":"We study Neron models of pseudo-Abelian varieties over excellent discrete valuation rings of equal characteristic $p>0$ and generalize the notions of good reduction and semiabelian reduction to such algebraic groups. We prove that the well-known representation-theoretic criteria for good and semiabelian reduction due to Neron-Ogg-Shafarevich and Grothendieck carry over to the pseudo-Abelian case, and give examples to show that our results are the best possible in most cases. Finally, we study the order of the group scheme of connected components of the Neron model in the pseudo-Abelian case. Our method is able to control the $\\ell$-part (for $\\ell\\not=p$) of this order completely, and we study the $p$-part in a particular (but still reasonably general) situation.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":" 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study Neron models of pseudo-Abelian varieties over excellent discrete valuation rings of equal characteristic $p>0$ and generalize the notions of good reduction and semiabelian reduction to such algebraic groups. We prove that the well-known representation-theoretic criteria for good and semiabelian reduction due to Neron-Ogg-Shafarevich and Grothendieck carry over to the pseudo-Abelian case, and give examples to show that our results are the best possible in most cases. Finally, we study the order of the group scheme of connected components of the Neron model in the pseudo-Abelian case. Our method is able to control the $\ell$-part (for $\ell\not=p$) of this order completely, and we study the $p$-part in a particular (but still reasonably general) situation.
伪阿贝尔变体的内龙模型
我们研究在等特征 $p>0$ 的优秀离散估值环上的伪阿贝尔变种的内隆模型,并将良好还原和半阿贝尔还原的概念推广到这类代数群。我们证明了奈伦-奥格-沙法雷维奇和格罗滕迪克提出的著名的表示理论标准可以应用于伪阿贝尔情形,并举例说明我们的结果在大多数情况下都是最好的。最后,我们研究了伪阿贝尔情况下的内龙模型连通成分的群方案阶次。我们的方法能够完全控制这个阶的 $\ell$ 部分(对于 $\ell\not=p$),我们在一个特殊(但仍然合理一般)的情况下研究了 $p$ 部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信