Zeros and roots of unity in character tables

A. Miller
{"title":"Zeros and roots of unity in character tables","authors":"A. Miller","doi":"10.4171/lem/1042","DOIUrl":null,"url":null,"abstract":"For any finite group $G$, Thompson proved that, for each $\\chi\\in {\\rm Irr}(G)$, $\\chi(g)$ is a root of unity or zero for more than a third of the elements $g\\in G$, and Gallagher proved that, for each larger than average class $g^G$, $\\chi(g)$ is a root of unity or zero for more than a third of the irreducible characters $\\chi\\in {\\rm Irr}(G)$. We show that in many cases\"more than a third\"can be replaced by\"more than half\".","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For any finite group $G$, Thompson proved that, for each $\chi\in {\rm Irr}(G)$, $\chi(g)$ is a root of unity or zero for more than a third of the elements $g\in G$, and Gallagher proved that, for each larger than average class $g^G$, $\chi(g)$ is a root of unity or zero for more than a third of the irreducible characters $\chi\in {\rm Irr}(G)$. We show that in many cases"more than a third"can be replaced by"more than half".
字符表中的零点和统一根
对于任何有限群 $G$,汤普森(Thompson)证明了对于每个 $\chi\in {\rm Irr}(G)$,$\chi(g)$ 对于 G$ 中超过三分之一的元素 $g\ 是单整根或零,加拉格尔(Gallagher)证明了对于每个大于平均值的类 $g^G$,$\chi(g)$ 对于超过三分之一的不可还原字符 $\chi\in {\rm Irr}(G)$是单整根或零。我们证明,在许多情况下,"超过三分之一 "可以被 "超过一半 "取代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信