Kinerja jaringan saraf berbasis backpropagation dan LVQ sebagai algoritme fingerprint RSS LoRa untuk penentuan posisi pada ruang terbuka

M. Misbahuddin, M. Iqbal, Giri Wahyu Wiriasto, L. Ahmad, S. Akbar, M. Irwan
{"title":"Kinerja jaringan saraf berbasis backpropagation dan LVQ sebagai algoritme fingerprint RSS LoRa untuk penentuan posisi pada ruang terbuka","authors":"M. Misbahuddin, M. Iqbal, Giri Wahyu Wiriasto, L. Ahmad, S. Akbar, M. Irwan","doi":"10.14710/JTSISKOM.8.2.2020.121-126","DOIUrl":null,"url":null,"abstract":"Outdoor positioning is one of the important applications in the Internet of things (IoT). The usage of GPS is unsuitable for low-power IoT devices. Alternatively, it can use the LoRa devices. This research aims to find a better method as the fingerprint algorithm for determining the outdoor position using RSS LoRa. The methods used as the fingerprint algorithm were two artificial neural network models, i.e. backpropagation (BP) with four types of training methods and learning vector quantization (LVQ) with two types of training methods. The experiment results show the performance of LVQ1 better than those of LVQ2. Besides, the LVQ1 was also better than the BP method. However, both BP and LVQ2 have a performance that is almost similar to about 70 %. Both of the artificial neural network models, BP and LVQ, can be used as a fingerprint algorithm to determine quite accurate the outdoor object position.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"4 1","pages":"121-126"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.8.2.2020.121-126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Outdoor positioning is one of the important applications in the Internet of things (IoT). The usage of GPS is unsuitable for low-power IoT devices. Alternatively, it can use the LoRa devices. This research aims to find a better method as the fingerprint algorithm for determining the outdoor position using RSS LoRa. The methods used as the fingerprint algorithm were two artificial neural network models, i.e. backpropagation (BP) with four types of training methods and learning vector quantization (LVQ) with two types of training methods. The experiment results show the performance of LVQ1 better than those of LVQ2. Besides, the LVQ1 was also better than the BP method. However, both BP and LVQ2 have a performance that is almost similar to about 70 %. Both of the artificial neural network models, BP and LVQ, can be used as a fingerprint algorithm to determine quite accurate the outdoor object position.
基于反向传播和 LVQ 神经网络的 RSS LoRa 指纹算法在开放空间中的定位性能
户外定位是物联网(IoT)的重要应用之一。使用 GPS 不适合低功耗物联网设备。另外,还可以使用 LoRa 设备。本研究旨在找到一种更好的方法,作为使用 RSS LoRa 确定室外位置的指纹算法。指纹算法使用了两种人工神经网络模型,即使用四种训练方法的反向传播(BP)和使用两种训练方法的学习矢量量化(LVQ)。实验结果表明,LVQ1 的性能优于 LVQ2。此外,LVQ1 也优于 BP 方法。不过,BP 和 LVQ2 的性能几乎相近,都在 70% 左右。BP 和 LVQ 这两种人工神经网络模型都可用作指纹算法,以相当准确地确定室外物体的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信