Yunhyung Cho, Eunjeong Lee, M. Masuda, Seonjeong Park
{"title":"Unique toric structure on a Fano Bott manifold","authors":"Yunhyung Cho, Eunjeong Lee, M. Masuda, Seonjeong Park","doi":"10.4310/jsg.2023.v21.n3.a1","DOIUrl":null,"url":null,"abstract":"We prove that if there exists a $c_1$-preserving graded ring isomorphism between integral cohomology rings of two Fano Bott manifolds, then they are isomorphic as toric varieties. As a consequence, we give an affirmative answer to McDuff's question on the uniqueness of a toric structure on a Fano Bott manifold.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2023.v21.n3.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We prove that if there exists a $c_1$-preserving graded ring isomorphism between integral cohomology rings of two Fano Bott manifolds, then they are isomorphic as toric varieties. As a consequence, we give an affirmative answer to McDuff's question on the uniqueness of a toric structure on a Fano Bott manifold.