{"title":"A subconvex bound for twisted $L$-functions","authors":"Qingfeng Sun, Hui Wang","doi":"10.7169/facm/1940","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak{q}>2$ be a prime number, $\\chi$ a primitive Dirichlet character modulo $\\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\\otimes \\chi)\\ll \\mathfrak{q}^{1/2-1/12+\\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\\varepsilon$. The main input is a modifying trivial delta method developed in [1].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let $\mathfrak{q}>2$ be a prime number, $\chi$ a primitive Dirichlet character modulo $\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\otimes \chi)\ll \mathfrak{q}^{1/2-1/12+\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\varepsilon$. The main input is a modifying trivial delta method developed in [1].