A subconvex bound for twisted $L$-functions

Pub Date : 2020-05-17 DOI:10.7169/facm/1940
Qingfeng Sun, Hui Wang
{"title":"A subconvex bound for twisted $L$-functions","authors":"Qingfeng Sun, Hui Wang","doi":"10.7169/facm/1940","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak{q}>2$ be a prime number, $\\chi$ a primitive Dirichlet character modulo $\\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\\otimes \\chi)\\ll \\mathfrak{q}^{1/2-1/12+\\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\\varepsilon$. The main input is a modifying trivial delta method developed in [1].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $\mathfrak{q}>2$ be a prime number, $\chi$ a primitive Dirichlet character modulo $\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\otimes \chi)\ll \mathfrak{q}^{1/2-1/12+\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\varepsilon$. The main input is a modifying trivial delta method developed in [1].
分享
查看原文
扭曲 $L$ 函数的次凸边界
让 $\mathfrak{q}>2$ 是一个素数,$\chi$ 是一个原始的迪里夏特特征 modulo $\mathfrak{q}$,$f$ 是一个原始的全形余弦形式或一个水平为 $\mathfrak{q}$ 的 Hecke-Maass 余弦形式,并且是微不足道的新余弦。我们证明了亚凸边界 $$ L(1/2,f\otimes \chi)\ll \mathfrak{q}^{1/2-1/12+\varepsilon}, $$ 其中隐含常数只取决于 $f$ 和 $\varepsilon$ 的阿基米德参数。主要输入是[1]中开发的修正三阶三角法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信