Enhancing Clinical Predictive Modeling through Model Complexity-Driven Class Proportion Tuning for Class Imbalanced Data: An Empirical Study on Opioid Overdose Prediction.

Yinan Liu, Xinyu Dong, Weimin Lyu, Richard N Rosenthal, Rachel Wong, Tengfei Ma, Jun Kong, Fusheng Wang
{"title":"Enhancing Clinical Predictive Modeling through Model Complexity-Driven Class Proportion Tuning for Class Imbalanced Data: An Empirical Study on Opioid Overdose Prediction.","authors":"Yinan Liu, Xinyu Dong, Weimin Lyu, Richard N Rosenthal, Rachel Wong, Tengfei Ma, Jun Kong, Fusheng Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Class imbalance issues are prevalent in the medical field and significantly impact the performance of clinical predictive models. Traditional techniques to address this challenge aim to rebalance class proportions. They generally assume that the rebalanced proportions are derived from the original data, without considering the intricacies of the model utilized. This study challenges the prevailing assumption and introduces a new method that ties the optimal class proportions to model complexity. This approach allows for individualized tuning of class proportions for each model. Our experiments, centered on the opioid overdose prediction problem, highlight the performance gains achieved by this approach. Furthermore, rigorous regression analysis affirms the merits of the proposed theoretical framework, demonstrating a statistically significant correlation between hyperparameters controlling model complexity and the optimal class proportions.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141828/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Class imbalance issues are prevalent in the medical field and significantly impact the performance of clinical predictive models. Traditional techniques to address this challenge aim to rebalance class proportions. They generally assume that the rebalanced proportions are derived from the original data, without considering the intricacies of the model utilized. This study challenges the prevailing assumption and introduces a new method that ties the optimal class proportions to model complexity. This approach allows for individualized tuning of class proportions for each model. Our experiments, centered on the opioid overdose prediction problem, highlight the performance gains achieved by this approach. Furthermore, rigorous regression analysis affirms the merits of the proposed theoretical framework, demonstrating a statistically significant correlation between hyperparameters controlling model complexity and the optimal class proportions.

针对类不平衡数据,通过模型复杂性驱动的类比例调整增强临床预测建模:阿片类药物过量预测实证研究》。
类不平衡问题在医学领域非常普遍,严重影响临床预测模型的性能。应对这一挑战的传统技术旨在重新平衡类别比例。它们通常假设重新平衡的比例来自原始数据,而不考虑所使用模型的复杂性。本研究对这一普遍假设提出了挑战,并引入了一种新方法,将最佳类别比例与模型复杂性联系起来。这种方法允许对每个模型的类比例进行个性化调整。我们的实验以阿片类药物过量预测问题为中心,强调了这种方法所带来的性能提升。此外,严格的回归分析证实了所提出的理论框架的优点,证明了控制模型复杂性的超参数与最佳类别比例之间存在统计学意义上的显著相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信