AI and machine learning in medical imaging: key points from development to translation.

BJR artificial intelligence Pub Date : 2024-04-29 eCollection Date: 2024-01-01 DOI:10.1093/bjrai/ubae006
Ravi K Samala, Karen Drukker, Amita Shukla-Dave, Heang-Ping Chan, Berkman Sahiner, Nicholas Petrick, Hayit Greenspan, Usman Mahmood, Ronald M Summers, Georgia Tourassi, Thomas M Deserno, Daniele Regge, Janne J Näppi, Hiroyuki Yoshida, Zhimin Huo, Quan Chen, Daniel Vergara, Kenny H Cha, Richard Mazurchuk, Kevin T Grizzard, Henkjan Huisman, Lia Morra, Kenji Suzuki, Samuel G Armato, Lubomir Hadjiiski
{"title":"AI and machine learning in medical imaging: key points from development to translation.","authors":"Ravi K Samala, Karen Drukker, Amita Shukla-Dave, Heang-Ping Chan, Berkman Sahiner, Nicholas Petrick, Hayit Greenspan, Usman Mahmood, Ronald M Summers, Georgia Tourassi, Thomas M Deserno, Daniele Regge, Janne J Näppi, Hiroyuki Yoshida, Zhimin Huo, Quan Chen, Daniel Vergara, Kenny H Cha, Richard Mazurchuk, Kevin T Grizzard, Henkjan Huisman, Lia Morra, Kenji Suzuki, Samuel G Armato, Lubomir Hadjiiski","doi":"10.1093/bjrai/ubae006","DOIUrl":null,"url":null,"abstract":"<p><p>Innovation in medical imaging artificial intelligence (AI)/machine learning (ML) demands extensive data collection, algorithmic advancements, and rigorous performance assessments encompassing aspects such as generalizability, uncertainty, bias, fairness, trustworthiness, and interpretability. Achieving widespread integration of AI/ML algorithms into diverse clinical tasks will demand a steadfast commitment to overcoming issues in model design, development, and performance assessment. The complexities of AI/ML clinical translation present substantial challenges, requiring engagement with relevant stakeholders, assessment of cost-effectiveness for user and patient benefit, timely dissemination of information relevant to robust functioning throughout the AI/ML lifecycle, consideration of regulatory compliance, and feedback loops for real-world performance evidence. This commentary addresses several hurdles for the development and adoption of AI/ML technologies in medical imaging. Comprehensive attention to these underlying and often subtle factors is critical not only for tackling the challenges but also for exploring novel opportunities for the advancement of AI in radiology.</p>","PeriodicalId":517427,"journal":{"name":"BJR artificial intelligence","volume":"1 1","pages":"ubae006"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140849/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJR artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bjrai/ubae006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Innovation in medical imaging artificial intelligence (AI)/machine learning (ML) demands extensive data collection, algorithmic advancements, and rigorous performance assessments encompassing aspects such as generalizability, uncertainty, bias, fairness, trustworthiness, and interpretability. Achieving widespread integration of AI/ML algorithms into diverse clinical tasks will demand a steadfast commitment to overcoming issues in model design, development, and performance assessment. The complexities of AI/ML clinical translation present substantial challenges, requiring engagement with relevant stakeholders, assessment of cost-effectiveness for user and patient benefit, timely dissemination of information relevant to robust functioning throughout the AI/ML lifecycle, consideration of regulatory compliance, and feedback loops for real-world performance evidence. This commentary addresses several hurdles for the development and adoption of AI/ML technologies in medical imaging. Comprehensive attention to these underlying and often subtle factors is critical not only for tackling the challenges but also for exploring novel opportunities for the advancement of AI in radiology.

医学成像中的人工智能和机器学习:从开发到转化的关键点。
医学影像人工智能(AI)/机器学习(ML)的创新需要广泛的数据收集、算法进步和严格的性能评估,包括可推广性、不确定性、偏差、公平性、可信度和可解释性等方面。要将人工智能/人工智能算法广泛整合到各种临床任务中,就必须坚定不移地克服模型设计、开发和性能评估方面的问题。人工智能/ML 临床转化的复杂性带来了巨大的挑战,需要相关利益方的参与、对用户和患者利益的成本效益评估、在人工智能/ML 的整个生命周期内及时传播与稳健运行相关的信息、考虑监管合规性以及真实世界性能证据的反馈回路。本评论探讨了医学影像领域开发和采用人工智能/ML 技术的几个障碍。全面关注这些潜在的、往往是微妙的因素不仅对应对挑战至关重要,而且对探索放射学人工智能发展的新机遇也至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信