Classification of psychedelics and psychoactive drugs based on brain-wide imaging of cellular c-Fos expression.

Farid Aboharb, Pasha A Davoudian, Ling-Xiao Shao, Clara Liao, Gillian N Rzepka, Cassandra Wojtasiewicz, Jonathan Indajang, Mark Dibbs, Jocelyne Rondeau, Alexander M Sherwood, Alfred P Kaye, Alex C Kwan
{"title":"Classification of psychedelics and psychoactive drugs based on brain-wide imaging of cellular c-Fos expression.","authors":"Farid Aboharb, Pasha A Davoudian, Ling-Xiao Shao, Clara Liao, Gillian N Rzepka, Cassandra Wojtasiewicz, Jonathan Indajang, Mark Dibbs, Jocelyne Rondeau, Alexander M Sherwood, Alfred P Kaye, Alex C Kwan","doi":"10.1101/2024.05.23.590306","DOIUrl":null,"url":null,"abstract":"<p><p>Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with distinguishable but also overlapping features. The growing interest in using these compounds as therapeutics necessitates preclinical assays that can accurately screen psychedelics and related analogs. We posit that a promising approach may be to measure drug action on markers of neural plasticity in native brain tissues. We therefore developed a pipeline for drug classification using light sheet fluorescence microscopy of immediate early gene expression at cellular resolution followed by machine learning. We tested male and female mice with a panel of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain regions driving the machine learning predictions. Our results support a novel approach for characterizing and validating psychoactive drugs with psychedelic properties.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.05.23.590306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with distinguishable but also overlapping features. The growing interest in using these compounds as therapeutics necessitates preclinical assays that can accurately screen psychedelics and related analogs. We posit that a promising approach may be to measure drug action on markers of neural plasticity in native brain tissues. We therefore developed a pipeline for drug classification using light sheet fluorescence microscopy of immediate early gene expression at cellular resolution followed by machine learning. We tested male and female mice with a panel of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain regions driving the machine learning predictions. Our results support a novel approach for characterizing and validating psychoactive drugs with psychedelic properties.

根据细胞 c-Fos 表达的全脑成像对迷幻药进行分类。
迷幻药、氯胺酮和亚甲二氧基甲基苯丙胺都是具有精神活性的化合物,它们产生的行为效应既有区别又有重叠。将这些化合物用作治疗药物的兴趣与日俱增,因此需要能准确筛选迷幻剂和相关类似物的临床前试验。我们认为,衡量药物对原生脑组织中神经可塑性标志物的作用可能是一种很有前途的方法。因此,我们利用光片荧光显微镜对细胞分辨率的即刻早期基因表达进行了分析,然后利用机器学习技术开发了一种药物分类方法。我们用一系列药物对雄性和雌性小鼠进行了测试,包括迷幻药、氯胺酮、5-MeO-DMT、6-氟-DET、摇头丸、急性氟西汀、慢性氟西汀和车辆。在单对单分类中,准确识别药物的准确率为 66%,大大高于 12.5% 的概率水平。在单对单分类中,将迷幻药与 5-MeO-DMT、氯胺酮、摇头丸或急性氟西汀区分开来的准确率大于 95%。我们使用沙普利加法解释来确定驱动机器学习预测的大脑区域。我们的研究结果为筛选具有迷幻特性的精神活性药物提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信