SABER: Statistical Identification of Loci of Interest in GWAS Summary Statistics using a Bayesian Gaussian Mixture Model.

Rachit Kumar, Rasika Venkatesh, Marylyn D Ritchie
{"title":"SABER: Statistical Identification of Loci of Interest in GWAS Summary Statistics using a Bayesian Gaussian Mixture Model.","authors":"Rachit Kumar, Rasika Venkatesh, Marylyn D Ritchie","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWAS) remain a popular method for identifying novel genetic associations with human phenotypes and have provided many insights into the etiology of many diseases. However, GWAS provide limited support for how a genetic association might contribute to disease due to inherent limitations, such as linkage disequilibrium. As such, many methods that operate on GWAS summary statistics have been developed to generate evidence for functional pathways or for variants of interest, but they require defining the genomic region bounds for loci of interest. At present, there are limited methods for determining these bounds in a rigorous, reproducible way. We present a novel statistical method, Statistical Analysis for Bayesian Estimation of Regions (SABER), that uses Bayesian Gaussian mixture models to reproducibly generate ratios that quantify whether particular genomic positions represent the bounds of loci of interest and can be used to delineate genomic regions for downstream analyses.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":"2024 ","pages":"575-583"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141805/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genome-wide association studies (GWAS) remain a popular method for identifying novel genetic associations with human phenotypes and have provided many insights into the etiology of many diseases. However, GWAS provide limited support for how a genetic association might contribute to disease due to inherent limitations, such as linkage disequilibrium. As such, many methods that operate on GWAS summary statistics have been developed to generate evidence for functional pathways or for variants of interest, but they require defining the genomic region bounds for loci of interest. At present, there are limited methods for determining these bounds in a rigorous, reproducible way. We present a novel statistical method, Statistical Analysis for Bayesian Estimation of Regions (SABER), that uses Bayesian Gaussian mixture models to reproducibly generate ratios that quantify whether particular genomic positions represent the bounds of loci of interest and can be used to delineate genomic regions for downstream analyses.

SABER:使用贝叶斯高斯混杂模型统计识别 GWAS 摘要统计中的相关基因位点。
全基因组关联研究(GWAS)仍然是确定新的遗传关联与人类表型的常用方法,并为许多疾病的病因学提供了许多见解。然而,全基因组关联研究因其固有的局限性(如连锁不平衡),对遗传关联如何导致疾病提供的支持有限。因此,人们开发了许多基于 GWAS 概要统计的方法,为功能途径或感兴趣的变异提供证据,但这些方法需要定义感兴趣基因座的基因组区域边界。目前,以严格、可重复的方式确定这些界限的方法还很有限。我们提出了一种新颖的统计方法--区域贝叶斯估计统计分析(SABER),它使用贝叶斯高斯混合模型可重复地生成比率,量化特定基因组位置是否代表感兴趣基因座的边界,并可用于为下游分析划定基因组区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信