PFERM: A Fair Empirical Risk Minimization Approach with Prior Knowledge.

Bojian Hou, Andrés Mondragón, Davoud Ataee Tarzanagh, Zhuoping Zhou, Andrew J Saykin, Jason H Moore, Marylyn D Ritchie, Qi Long, Li Shen
{"title":"PFERM: A Fair Empirical Risk Minimization Approach with Prior Knowledge.","authors":"Bojian Hou, Andrés Mondragón, Davoud Ataee Tarzanagh, Zhuoping Zhou, Andrew J Saykin, Jason H Moore, Marylyn D Ritchie, Qi Long, Li Shen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Fairness is crucial in machine learning to prevent bias based on sensitive attributes in classifier predictions. However, the pursuit of strict fairness often sacrifices accuracy, particularly when significant prevalence disparities exist among groups, making classifiers less practical. For example, Alzheimer's disease (AD) is more prevalent in women than men, making equal treatment inequitable for females. Accounting for prevalence ratios among groups is essential for fair decision-making. In this paper, we introduce prior knowledge for fairness, which incorporates prevalence ratio information into the fairness constraint within the Empirical Risk Minimization (ERM) framework. We develop the Prior-knowledge-guided Fair ERM (PFERM) framework, aiming to minimize expected risk within a specified function class while adhering to a prior-knowledge-guided fairness constraint. This approach strikes a flexible balance between accuracy and fairness. Empirical results confirm its effectiveness in preserving fairness without compromising accuracy.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fairness is crucial in machine learning to prevent bias based on sensitive attributes in classifier predictions. However, the pursuit of strict fairness often sacrifices accuracy, particularly when significant prevalence disparities exist among groups, making classifiers less practical. For example, Alzheimer's disease (AD) is more prevalent in women than men, making equal treatment inequitable for females. Accounting for prevalence ratios among groups is essential for fair decision-making. In this paper, we introduce prior knowledge for fairness, which incorporates prevalence ratio information into the fairness constraint within the Empirical Risk Minimization (ERM) framework. We develop the Prior-knowledge-guided Fair ERM (PFERM) framework, aiming to minimize expected risk within a specified function class while adhering to a prior-knowledge-guided fairness constraint. This approach strikes a flexible balance between accuracy and fairness. Empirical results confirm its effectiveness in preserving fairness without compromising accuracy.

PFERM:有先验知识的公平经验风险最小化方法。
在机器学习中,公平性对于防止分类器预测中基于敏感属性的偏差至关重要。然而,追求严格的公平性往往会牺牲准确性,尤其是当群体间存在显著的患病率差异时,分类器的实用性就会大打折扣。例如,阿尔茨海默病(AD)在女性中的发病率高于男性,因此平等对待女性是不公平的。考虑群体间的患病率比率对于公平决策至关重要。在本文中,我们引入了公平性先验知识,将患病率信息纳入经验风险最小化(ERM)框架的公平性约束中。我们开发了先验知识指导的公平 ERM(PFERM)框架,旨在最小化指定函数类别内的预期风险,同时遵守先验知识指导的公平性约束。这种方法在准确性和公平性之间取得了灵活的平衡。实证结果证实了它在保持公平性的同时不影响准确性的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信