Moutaz Alazab, Ruba Abu Khurma, David Camacho, Alejandro Martín
{"title":"Enhanced Android Ransomware Detection Through Hybrid Simultaneous Swarm-Based Optimization","authors":"Moutaz Alazab, Ruba Abu Khurma, David Camacho, Alejandro Martín","doi":"10.1007/s12559-024-10301-4","DOIUrl":null,"url":null,"abstract":"<p>Ransomware is a significant security threat that poses a serious risk to the security of smartphones, and its impact on portable devices has been extensively discussed in a number of research papers. In recent times, this threat has witnessed a significant increase, causing substantial losses for both individuals and organizations. The emergence and widespread occurrence of diverse forms of ransomware present a significant impediment to the pursuit of reliable security measures that can effectively combat them. This constitutes a formidable challenge due to the dynamic nature of ransomware, which renders traditional security protocols inadequate, as they might have a high false alarm rate and exert significant processing demands on mobile devices that are restricted by limited battery life, CPU, and memory. This paper proposes a novel intelligent method for detecting ransomware that is based on a hybrid multi-solution binary JAYA algorithm with a single-solution simulated annealing (SA). The primary objective is to leverage the exploitation power of SA in supporting the exploration power of the binary JAYA algorithm. This approach results in a better balance between global and local search milestones. The empirical results of our research demonstrate the superiority of the proposed SMO-BJAYA-SA-SVM method over other algorithms based on the evaluation measures used. The proposed method achieved an accuracy rate of 98.7%, a precision of 98.6%, a recall of 98.7%, and an F1 score of 98.6%. Therefore, we believe that our approach is an effective method for detecting ransomware on portable devices. It has the potential to provide a more reliable and efficient solution to this growing security threat.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10301-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Ransomware is a significant security threat that poses a serious risk to the security of smartphones, and its impact on portable devices has been extensively discussed in a number of research papers. In recent times, this threat has witnessed a significant increase, causing substantial losses for both individuals and organizations. The emergence and widespread occurrence of diverse forms of ransomware present a significant impediment to the pursuit of reliable security measures that can effectively combat them. This constitutes a formidable challenge due to the dynamic nature of ransomware, which renders traditional security protocols inadequate, as they might have a high false alarm rate and exert significant processing demands on mobile devices that are restricted by limited battery life, CPU, and memory. This paper proposes a novel intelligent method for detecting ransomware that is based on a hybrid multi-solution binary JAYA algorithm with a single-solution simulated annealing (SA). The primary objective is to leverage the exploitation power of SA in supporting the exploration power of the binary JAYA algorithm. This approach results in a better balance between global and local search milestones. The empirical results of our research demonstrate the superiority of the proposed SMO-BJAYA-SA-SVM method over other algorithms based on the evaluation measures used. The proposed method achieved an accuracy rate of 98.7%, a precision of 98.6%, a recall of 98.7%, and an F1 score of 98.6%. Therefore, we believe that our approach is an effective method for detecting ransomware on portable devices. It has the potential to provide a more reliable and efficient solution to this growing security threat.
期刊介绍:
Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.