Aqilah A. Hakami, Hajar S. Alorfi, Thoraya A. Farghaly, Mahmoud A. Hussein
{"title":"Synthesis, and antimicrobial activity of polyazomethine-pyrazole/multi-walled carbon nanotubes nanocomposite materials","authors":"Aqilah A. Hakami, Hajar S. Alorfi, Thoraya A. Farghaly, Mahmoud A. Hussein","doi":"10.1177/09673911241248419","DOIUrl":null,"url":null,"abstract":"A novel series of bioactive polymer nanocomposites was recently created using the polycondensation method in conjunction with ultrasonic radiation. These nanocomposites comprise multi-wall carbon nanotubes and polyazomethine, which is based on the pyrazole moiety with various derivatives. The polyazomethine polymer was supplemented with a 2% concentration of multi-wall carbon nanotubes. The produced polymer nanocomposites were identified by Fourier-transform infrared spectroscopy and characterized by common characterization tools including X-ray diffraction, Scanning electron microscopy, and Transmission electron microscopy. The thermal stability was measured by thermogravimetric analysis and differential thermal gravimetry. The results of the X-ray diffraction patterns indicate that the multi-wall carbon nanotubes are really in the polymer matrix. The thermal analysis of these polymer nanocomposites shows high thermal stability. The agar diffusion technique was used to assess the antibacterial properties of the freshly synthesized polymer nanocomposites against various bacterial and fungal species. The chosen bacteria and fungi were susceptible to varying degrees of antimicrobial and antifungal activity in the polymer nanocomposites that were evaluated. Moreover, the antibacterial properties of the fabricated Polymer nanocomposites were assessed through colony forming units against Escherichia coli bacteria and showed good effectiveness of all tested polymer nanocomposites. All samples showed an effect on bacterial growth after 12 h by 22%–35%. After 24 h, the percent inhibition of E. coli in the presence of the prepared polymer nanocomposites was highest; it showed 45%–60%.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911241248419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A novel series of bioactive polymer nanocomposites was recently created using the polycondensation method in conjunction with ultrasonic radiation. These nanocomposites comprise multi-wall carbon nanotubes and polyazomethine, which is based on the pyrazole moiety with various derivatives. The polyazomethine polymer was supplemented with a 2% concentration of multi-wall carbon nanotubes. The produced polymer nanocomposites were identified by Fourier-transform infrared spectroscopy and characterized by common characterization tools including X-ray diffraction, Scanning electron microscopy, and Transmission electron microscopy. The thermal stability was measured by thermogravimetric analysis and differential thermal gravimetry. The results of the X-ray diffraction patterns indicate that the multi-wall carbon nanotubes are really in the polymer matrix. The thermal analysis of these polymer nanocomposites shows high thermal stability. The agar diffusion technique was used to assess the antibacterial properties of the freshly synthesized polymer nanocomposites against various bacterial and fungal species. The chosen bacteria and fungi were susceptible to varying degrees of antimicrobial and antifungal activity in the polymer nanocomposites that were evaluated. Moreover, the antibacterial properties of the fabricated Polymer nanocomposites were assessed through colony forming units against Escherichia coli bacteria and showed good effectiveness of all tested polymer nanocomposites. All samples showed an effect on bacterial growth after 12 h by 22%–35%. After 24 h, the percent inhibition of E. coli in the presence of the prepared polymer nanocomposites was highest; it showed 45%–60%.