{"title":"Clonoids between modules","authors":"Peter Mayr, Patrick Wynne","doi":"10.1142/s021819672450022x","DOIUrl":null,"url":null,"abstract":"<p>Clonoids are sets of finitary functions from an algebra <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">A</mtext></mstyle></math></span><span></span> to an algebra <span><math altimg=\"eq-00002.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">B</mtext></mstyle></math></span><span></span> that are closed under composition with term functions of <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">A</mtext></mstyle></math></span><span></span> on the domain side and with term functions of <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">B</mtext></mstyle></math></span><span></span> on the codomain side. For <span><math altimg=\"eq-00005.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">A, B</mtext></mstyle></math></span><span></span> (polynomially equivalent to) finite modules we show: If <span><math altimg=\"eq-00006.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">A, B</mtext></mstyle></math></span><span></span> have coprime order and the congruence lattice of <span><math altimg=\"eq-00007.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">A</mtext></mstyle></math></span><span></span> is distributive, then there are only finitely many clonoids from <span><math altimg=\"eq-00008.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">A</mtext></mstyle></math></span><span></span> to <span><math altimg=\"eq-00009.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">B</mtext></mstyle></math></span><span></span>. This is proved by establishing for every natural number <span><math altimg=\"eq-00010.gif\" display=\"inline\"><mi>k</mi></math></span><span></span> a particular linear equation that all <span><math altimg=\"eq-00011.gif\" display=\"inline\"><mi>k</mi></math></span><span></span>-ary functions from <span><math altimg=\"eq-00012.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">A</mtext></mstyle></math></span><span></span> to <span><math altimg=\"eq-00013.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">B</mtext></mstyle></math></span><span></span> satisfy. Else if <span><math altimg=\"eq-00014.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">A, B</mtext></mstyle></math></span><span></span> do not have coprime order, then there exist infinite ascending chains of clonoids from <span><math altimg=\"eq-00015.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">A</mtext></mstyle></math></span><span></span> to <span><math altimg=\"eq-00016.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">B</mtext></mstyle></math></span><span></span> ordered by inclusion. Consequently any extension of <span><math altimg=\"eq-00017.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">A</mtext></mstyle></math></span><span></span> by <span><math altimg=\"eq-00018.gif\" display=\"inline\"><mstyle><mtext mathvariant=\"normal\">B</mtext></mstyle></math></span><span></span> has countably infinitely many <span><math altimg=\"eq-00019.gif\" display=\"inline\"><mn>2</mn></math></span><span></span>-nilpotent expansions up to term equivalence.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021819672450022x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Clonoids are sets of finitary functions from an algebra to an algebra that are closed under composition with term functions of on the domain side and with term functions of on the codomain side. For (polynomially equivalent to) finite modules we show: If have coprime order and the congruence lattice of is distributive, then there are only finitely many clonoids from to . This is proved by establishing for every natural number a particular linear equation that all -ary functions from to satisfy. Else if do not have coprime order, then there exist infinite ascending chains of clonoids from to ordered by inclusion. Consequently any extension of by has countably infinitely many -nilpotent expansions up to term equivalence.
有限模块是指从代数 A 到代数 B 的有限函数集合,这些函数在与域边上的 A 的项函数和同域边上的 B 的项函数的组合下是封闭的。对于 A、B(多项式等价于)有限模块,我们证明:如果 A、B 有共阶,且 A 的全等网格是分布式的,那么从 A 到 B 只有有限多个克隆子。这可以通过为每个自然数 k 建立一个特定的线性方程来证明,从 A 到 B 的所有 kary 函数都满足这个方程。否则,如果 A、B 没有共序,那么就存在从 A 到 B 按包含排序的无限递增的克隆子链。因此,任何由 B 扩展的 A 都有可数的无限多个 2-nilpotent 扩展,直到项等价。
期刊介绍:
The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.