Realization of Inverse Stieltjes Functions $$(-m_\alpha (z))$$ by Schrödinger L-Systems

Pub Date : 2024-05-30 DOI:10.1007/s11785-024-01522-4
S. Belyi, E. Tsekanovskiĭ
{"title":"Realization of Inverse Stieltjes Functions $$(-m_\\alpha (z))$$ by Schrödinger L-Systems","authors":"S. Belyi, E. Tsekanovskiĭ","doi":"10.1007/s11785-024-01522-4","DOIUrl":null,"url":null,"abstract":"<p>We study L-system realizations generated by the original Weyl–Titchmarsh functions <span>\\(m_\\alpha (z)\\)</span>. In the case when the minimal symmetric Schrödinger operator is non-negative, we describe Schrödinger L-systems that realize inverse Stieltjes functions <span>\\((-m_\\alpha (z))\\)</span>. This approach allows to derive a necessary and sufficient conditions for the functions <span>\\((-m_\\alpha (z))\\)</span> to be inverse Stieltjes. In particular, the criteria when <span>\\((-m_\\infty (z))\\)</span> is an inverse Stieltjes function is provided. Moreover, it is shown that the knowledge of the value <span>\\(m_\\infty (-0)\\)</span> and parameter <span>\\(\\alpha \\)</span> allows us to describe the geometric structure of the L-system realizing <span>\\((-m_\\alpha (z))\\)</span>. Additionally, we present the conditions in terms of the parameter <span>\\(\\alpha \\)</span> when the main and associated operators of a realizing <span>\\((-m_\\alpha (z))\\)</span> L-system have the same or different angle of sectoriality which sets connections with the Kato problem on sectorial extensions of sectorial forms. An example that illustrates the obtained results is presented in the end of the paper.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01522-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study L-system realizations generated by the original Weyl–Titchmarsh functions \(m_\alpha (z)\). In the case when the minimal symmetric Schrödinger operator is non-negative, we describe Schrödinger L-systems that realize inverse Stieltjes functions \((-m_\alpha (z))\). This approach allows to derive a necessary and sufficient conditions for the functions \((-m_\alpha (z))\) to be inverse Stieltjes. In particular, the criteria when \((-m_\infty (z))\) is an inverse Stieltjes function is provided. Moreover, it is shown that the knowledge of the value \(m_\infty (-0)\) and parameter \(\alpha \) allows us to describe the geometric structure of the L-system realizing \((-m_\alpha (z))\). Additionally, we present the conditions in terms of the parameter \(\alpha \) when the main and associated operators of a realizing \((-m_\alpha (z))\) L-system have the same or different angle of sectoriality which sets connections with the Kato problem on sectorial extensions of sectorial forms. An example that illustrates the obtained results is presented in the end of the paper.

Abstract Image

分享
查看原文
用薛定谔 L 系统实现逆斯蒂尔杰斯函数 $$(-m_\alpha (z))$$
我们研究了由原始韦尔-蒂奇马什函数\(m_\alpha (z)\)产生的L系统实现。在最小对称薛定谔算子为非负的情况下,我们描述了实现逆斯蒂尔杰斯函数((-m_\alpha (z))的薛定谔L-系统。)通过这种方法,我们可以推导出函数 \((-m_\alpha (z))\) 成为反斯蒂尔杰斯函数的必要条件和充分条件。特别是提供了 \((-m_\infty (z))\) 是反 Stieltjes 函数的标准。此外,我们还证明了值\(m_\infty (-0)\)和参数\(\alpha \)的知识允许我们描述实现\((-m_\alpha (z))\的L系统的几何结构。)此外,当实现((-m_\alpha (z))的L-系统的主算子和相关算子具有相同或相似的性质时,我们用参数(\(α \))给出了条件。L 系统具有相同或不同的扇形角,这就与扇形的扇形扩展的加藤问题建立了联系。本文最后将举例说明所获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信