{"title":"MAPANet: A Multi-Scale Attention-Guided Progressive Aggregation Network for Multi-Contrast MRI Super-Resolution","authors":"Licheng Liu;Tao Liu;Wei Zhou;Yaonan Wang;Min Liu","doi":"10.1109/TCI.2024.3393723","DOIUrl":null,"url":null,"abstract":"Multi-contrast magnetic resonance imaging (MRI) super-resolution (SR), which utilizes complementary information from different contrast images to reconstruct the target images, can provide rich information for quantitative image analysis and accurate medical diagnosis. However, the current mainstream methods are failed in exploiting multi-scale features or global information for data representation, leading to poor outcomes. To address these limitations, we propose a multi-scale attention-guided progressive aggregation network (MAPANet) to progressively restore the target contrast MR images from the corresponding low resolution (LR) observations with the assistance of auxiliary contrast images. Specifically, the proposed MAPANet is composed of several stacked dual-branch aggregation (DBA) blocks, each of which consists of two parallel modules: the multi-scale attention module (MSAM) and the reference feature extraction module (RFEM). The former aims to utilize multi-scale and appropriate non-local information to facilitate the SR reconstruction, while the latter is designed to extract the complementary information from auxiliary contrast images to assist in restoring edge structures and details for target contrast images. Extensive experiments on the public datasets demonstrate that the proposed MAPANet outperforms several state-of-the-art multi-contrast SR methods.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"928-940"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10543098/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-contrast magnetic resonance imaging (MRI) super-resolution (SR), which utilizes complementary information from different contrast images to reconstruct the target images, can provide rich information for quantitative image analysis and accurate medical diagnosis. However, the current mainstream methods are failed in exploiting multi-scale features or global information for data representation, leading to poor outcomes. To address these limitations, we propose a multi-scale attention-guided progressive aggregation network (MAPANet) to progressively restore the target contrast MR images from the corresponding low resolution (LR) observations with the assistance of auxiliary contrast images. Specifically, the proposed MAPANet is composed of several stacked dual-branch aggregation (DBA) blocks, each of which consists of two parallel modules: the multi-scale attention module (MSAM) and the reference feature extraction module (RFEM). The former aims to utilize multi-scale and appropriate non-local information to facilitate the SR reconstruction, while the latter is designed to extract the complementary information from auxiliary contrast images to assist in restoring edge structures and details for target contrast images. Extensive experiments on the public datasets demonstrate that the proposed MAPANet outperforms several state-of-the-art multi-contrast SR methods.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.