Zilong Wang, Jiawei Chen, Yue Su, Xu Zhang, Lixia Zhao
{"title":"Low static power consumption GaN-based CMOS-like inverter design","authors":"Zilong Wang, Jiawei Chen, Yue Su, Xu Zhang, Lixia Zhao","doi":"10.1007/s43236-024-00847-9","DOIUrl":null,"url":null,"abstract":"<p>It is necessary to achieve current matching for GaN-based CMOS-like inverters. However, due to the low hole mobility of GaN p-FET devices, the weak output capacity of GaN p-FET devices makes it difficult to obtain current matching with n-FET devices in the off-state, which hinders the development of GaN-based CMOS-like inverters. In this study, a GaN-based CMOS-like device with an AlGaN back barrier layer is designed and its off-state leakage current is compared with that without an AlGaN back-barrier layer. The results show that the 2DEG confinement in the GaN-based n-FET device with an AlGaN back barrier layer can be enhanced and the leakage current is reduced from 10<sup>–3</sup> A to 10<sup>–6</sup> A in the off-state. This is accomplished without influencing the current of the GaN-based p-FET device in the off-state, resulting in a good current consistency between the n-FET device and the p-FET device in the off-state. The static power consumption is 4.5 µW for GaN-based CMOS-like inverters with an AlGaN back barrier structure when it is operated at <i>V</i><sub>dd</sub> = 5 V. The rise time (t<sub>r</sub>) and fall time (t<sub>f</sub>) of the GaN-based CMOS-like inverters are 4 μs and 0.12 μs, respectively. The low noise margin (NM<sub>L</sub>) is 1.90 V and the high noise margin (NM<sub>H</sub>) is 2.55 V. This work lays a foundation for the development of the future of GaN-based integrated ICs.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"8 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00847-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
It is necessary to achieve current matching for GaN-based CMOS-like inverters. However, due to the low hole mobility of GaN p-FET devices, the weak output capacity of GaN p-FET devices makes it difficult to obtain current matching with n-FET devices in the off-state, which hinders the development of GaN-based CMOS-like inverters. In this study, a GaN-based CMOS-like device with an AlGaN back barrier layer is designed and its off-state leakage current is compared with that without an AlGaN back-barrier layer. The results show that the 2DEG confinement in the GaN-based n-FET device with an AlGaN back barrier layer can be enhanced and the leakage current is reduced from 10–3 A to 10–6 A in the off-state. This is accomplished without influencing the current of the GaN-based p-FET device in the off-state, resulting in a good current consistency between the n-FET device and the p-FET device in the off-state. The static power consumption is 4.5 µW for GaN-based CMOS-like inverters with an AlGaN back barrier structure when it is operated at Vdd = 5 V. The rise time (tr) and fall time (tf) of the GaN-based CMOS-like inverters are 4 μs and 0.12 μs, respectively. The low noise margin (NML) is 1.90 V and the high noise margin (NMH) is 2.55 V. This work lays a foundation for the development of the future of GaN-based integrated ICs.
期刊介绍:
The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.