Effect of cooling method on TiN precipitation behavior of high-titanium high-strength steel during solidification

IF 2.5 2区 材料科学
Xue-jian Zhang, Guang-wei Yang, Yong Wan, Yong-hong Wen, Chuan-sheng Tang, Ming-qi Liu, Li-jie Tian
{"title":"Effect of cooling method on TiN precipitation behavior of high-titanium high-strength steel during solidification","authors":"Xue-jian Zhang, Guang-wei Yang, Yong Wan, Yong-hong Wen, Chuan-sheng Tang, Ming-qi Liu, Li-jie Tian","doi":"10.1007/s42243-024-01184-8","DOIUrl":null,"url":null,"abstract":"<p>Metallographic microscopy, scanning electron microscopy and TiN growth thermodynamic and kinetic equations were used to investigate the morphology, quantity, and size of TiN in the center of high-titanium high-strength steels under different solidification cooling rates. The results showed that TiN in the center of the experimental steels mainly existed in three forms: single, composite (Al<sub>2</sub>O<sub>3</sub>–TiN), and multi-particle aggregation. TiN began precipitating at around 1497 °C (solidification fraction of 0.74). From the end of melting to solidification for 180 s, the cooling rates in the center of the experimental steels for furnace cooling, air cooling, refractory mold cooling, and cast iron mold cooling tended to stabilize at 0.17, 0.93, 1.65, and 2.15 °C/s, respectively. The size of TiN in the center of the experimental steel cooled using furnace cooling was mainly concentrated in the 5–15 µm range. In contrast, the size of TiN in the center of the experimental steels cooled using air cooling, refractory mold cooling, and cast iron mold cooling were mainly concentrated in the 1–5 µm range. In addition, their density of TiN in the center of the experimental steels is significantly higher than that of the furnace-cooled experimental steel. Thermodynamic and kinetic precipitation models of TiN established predicted the growth size of TiN in a high-titanium high-strength steel when the solidification cooling rates are not below 0.93 °C/s.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01184-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metallographic microscopy, scanning electron microscopy and TiN growth thermodynamic and kinetic equations were used to investigate the morphology, quantity, and size of TiN in the center of high-titanium high-strength steels under different solidification cooling rates. The results showed that TiN in the center of the experimental steels mainly existed in three forms: single, composite (Al2O3–TiN), and multi-particle aggregation. TiN began precipitating at around 1497 °C (solidification fraction of 0.74). From the end of melting to solidification for 180 s, the cooling rates in the center of the experimental steels for furnace cooling, air cooling, refractory mold cooling, and cast iron mold cooling tended to stabilize at 0.17, 0.93, 1.65, and 2.15 °C/s, respectively. The size of TiN in the center of the experimental steel cooled using furnace cooling was mainly concentrated in the 5–15 µm range. In contrast, the size of TiN in the center of the experimental steels cooled using air cooling, refractory mold cooling, and cast iron mold cooling were mainly concentrated in the 1–5 µm range. In addition, their density of TiN in the center of the experimental steels is significantly higher than that of the furnace-cooled experimental steel. Thermodynamic and kinetic precipitation models of TiN established predicted the growth size of TiN in a high-titanium high-strength steel when the solidification cooling rates are not below 0.93 °C/s.

Abstract Image

冷却方法对高钛高强度钢凝固过程中 TiN 沉淀行为的影响
采用金相显微镜、扫描电子显微镜和 TiN 生长热力学和动力学方程研究了不同凝固冷却速率下高钛高强钢中心 TiN 的形态、数量和尺寸。结果表明,实验钢中心的 TiN 主要以三种形式存在:单一、复合(Al2O3-TiN)和多颗粒聚集。TiN 在 1497 °C 左右开始析出(凝固分数为 0.74)。从熔化结束到凝固 180 秒,实验钢中心的炉冷、风冷、耐火材料模具冷却和铸铁模具冷却的冷却速率趋于稳定,分别为 0.17、0.93、1.65 和 2.15 °C/s。采用炉冷工艺冷却的实验钢中心的 TiN 尺寸主要集中在 5-15 µm 范围内。相比之下,使用空气冷却、耐火模冷却和铸铁模冷却的实验钢中心的 TiN 尺寸主要集中在 1-5 µm 范围内。此外,实验钢中心的 TiN 密度明显高于炉冷实验钢。建立的 TiN 热力学和动力学析出模型预测了凝固冷却速度不低于 0.93 °C/s 时高钛高强度钢中 TiN 的生长尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
16.00%
发文量
161
审稿时长
2.8 months
期刊介绍: Publishes critically reviewed original research of archival significance Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信