Unifying trigonometric and hyperbolic function derivatives via negative integer order polylogarithms

Andrew Ducharme
{"title":"Unifying trigonometric and hyperbolic function derivatives via negative integer order polylogarithms","authors":"Andrew Ducharme","doi":"arxiv-2405.19371","DOIUrl":null,"url":null,"abstract":"Special functions like the polygamma, Hurwitz zeta, and Lerch zeta functions\nhave sporadically been connected with the nth derivatives of trigonometric\nfunctions. We show the polylogarithm $\\text{Li}_s(z)$, a function of complex\nargument and order $z$ and $s$, encodes the nth derivatives of the cotangent,\ntangent, cosecant and secant functions, and their hyperbolic equivalents, at\nnegative integer orders $s = -n$. We then show how at the same orders, the\npolylogarithm represents the nth application of the operator $x \\frac{d}{dx}$\non the inverse trigonometric and hyperbolic functions. Finally, we construct a\nsum relating two polylogarithms of order $-n$ to a linear combination of\npolylogarithms of orders $s = 0, -1, -2, ..., -n$.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.19371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Special functions like the polygamma, Hurwitz zeta, and Lerch zeta functions have sporadically been connected with the nth derivatives of trigonometric functions. We show the polylogarithm $\text{Li}_s(z)$, a function of complex argument and order $z$ and $s$, encodes the nth derivatives of the cotangent, tangent, cosecant and secant functions, and their hyperbolic equivalents, at negative integer orders $s = -n$. We then show how at the same orders, the polylogarithm represents the nth application of the operator $x \frac{d}{dx}$ on the inverse trigonometric and hyperbolic functions. Finally, we construct a sum relating two polylogarithms of order $-n$ to a linear combination of polylogarithms of orders $s = 0, -1, -2, ..., -n$.
通过负整数阶多项式统一三角函数和双曲函数导数
像多伽马函数、赫维茨zeta函数和勒奇zeta函数这样的特殊函数,已经零星地与三角函数的n次导数联系在一起。我们展示了多项式 $text{Li}_s(z)$,一个复参数、阶数 $z$ 和 $s$ 的函数,在负整数阶数 $s = -n$ 时,编码了余切、正切、余割和正割函数的 n 次导数,以及它们的双曲等价物。然后,我们展示了在相同阶数下,对数如何表示算子 $x \frac{d}{dx}$ 在反三角函数和双曲函数上的第 n 次应用。最后,我们构建了将两个阶数为 $-n$ 的多项式与阶数为 $s = 0, -1, -2, ..., -n$ 的多项式的线性组合联系起来的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信