Pathwise-randomness and models of second-order arithmetic

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
George Barmpalias , Wei Wang
{"title":"Pathwise-randomness and models of second-order arithmetic","authors":"George Barmpalias ,&nbsp;Wei Wang","doi":"10.1016/j.ic.2024.105181","DOIUrl":null,"url":null,"abstract":"<div><p>A tree is <em>pathwise-random</em> if all of its paths are Martin-Löf random. We show that: (a) no weakly 2-random real computes a perfect pathwise-random tree; it follows that the class of perfect pathwise-random trees is null, with respect to any computable measure; (b) there exists a positive-measure pathwise-random tree which does not compute any complete extension of Peano arithmetic; and (c) there exists a perfect pathwise-random tree which does not compute any tree of positive measure and finite randomness deficiency. We then obtain models of second-order arithmetic that separate principles below weak Königs lemma.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"299 ","pages":"Article 105181"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000464","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A tree is pathwise-random if all of its paths are Martin-Löf random. We show that: (a) no weakly 2-random real computes a perfect pathwise-random tree; it follows that the class of perfect pathwise-random trees is null, with respect to any computable measure; (b) there exists a positive-measure pathwise-random tree which does not compute any complete extension of Peano arithmetic; and (c) there exists a perfect pathwise-random tree which does not compute any tree of positive measure and finite randomness deficiency. We then obtain models of second-order arithmetic that separate principles below weak Königs lemma.

路径随机性和二阶算术模型
如果一棵树的所有路径都是马丁-洛夫随机的,那么它就是一棵树。我们证明(a) 没有弱二阶随机实数能计算一棵完美路径随机树;因此,就任何可计算度量而言,完美路径随机树的类是空的;(b) 存在一棵正度量路径随机树,它不能计算任何完整的皮亚诺算术扩展;以及 (c) 存在一棵完美路径随机树,它不能计算任何正度量和有限随机性缺陷的树。然后,我们得到了二阶算术的模型,这些模型分离了弱柯尼斯 Lemma 下面的原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信