On a class of self-similar sets which contain finitely many common points

IF 1.3 3区 数学 Q1 MATHEMATICS
Kan Jiang, Derong Kong, Wenxia Li, Zhiqiang Wang
{"title":"On a class of self-similar sets which contain finitely many common points","authors":"Kan Jiang, Derong Kong, Wenxia Li, Zhiqiang Wang","doi":"10.1017/prm.2024.66","DOIUrl":null,"url":null,"abstract":"For <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda \\in (0,\\,1/2]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline1.png\"/> </jats:alternatives> </jats:inline-formula> let <jats:inline-formula> <jats:alternatives> <jats:tex-math>$K_\\lambda \\subset \\mathbb {R}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline2.png\"/> </jats:alternatives> </jats:inline-formula> be a self-similar set generated by the iterated function system <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\{\\lambda x,\\, \\lambda x+1-\\lambda \\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline3.png\"/> </jats:alternatives> </jats:inline-formula>. Given <jats:inline-formula> <jats:alternatives> <jats:tex-math>$x\\in (0,\\,1/2)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline4.png\"/> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\Lambda (x)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline5.png\"/> </jats:alternatives> </jats:inline-formula> be the set of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda \\in (0,\\,1/2]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline6.png\"/> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$x\\in K_\\lambda$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline7.png\"/> </jats:alternatives> </jats:inline-formula>. In this paper we show that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\Lambda (x)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline8.png\"/> </jats:alternatives> </jats:inline-formula> is a topological Cantor set having zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any <jats:inline-formula> <jats:alternatives> <jats:tex-math>$y_1,\\,\\ldots,\\, y_p\\in (0,\\,1/2)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline9.png\"/> </jats:alternatives> </jats:inline-formula> there exists a full Hausdorff dimensional set of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda \\in (0,\\,1/2]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline10.png\"/> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$y_1,\\,\\ldots,\\, y_p \\in K_\\lambda$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline11.png\"/> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"31 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.66","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For $\lambda \in (0,\,1/2]$ let $K_\lambda \subset \mathbb {R}$ be a self-similar set generated by the iterated function system $\{\lambda x,\, \lambda x+1-\lambda \}$ . Given $x\in (0,\,1/2)$ , let $\Lambda (x)$ be the set of $\lambda \in (0,\,1/2]$ such that $x\in K_\lambda$ . In this paper we show that $\Lambda (x)$ is a topological Cantor set having zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any $y_1,\,\ldots,\, y_p\in (0,\,1/2)$ there exists a full Hausdorff dimensional set of $\lambda \in (0,\,1/2]$ such that $y_1,\,\ldots,\, y_p \in K_\lambda$ .
关于一类包含有限多个公共点的自相似集合
对于 $\lambda (0,\,1/2]$,让 $K_\lambda \subset \mathbb {R}$ 是由迭代函数系统 ${\lambda x,\, \lambda x+1-\lambda \}$ 生成的自相似集合。给定 $x 在(0,/1/2)$ 中,让 $Lambda (x)$ 成为 $lambda 在(0,/1/2)$ 中的集合,使得 $x 在 K_lambda$ 中。在本文中,我们证明了 $\Lambda (x)$ 是一个拓扑康托集,具有零 Lebesgue 度量和全 Hausdorff 维度。此外,我们还证明了对于任何 $y_1,\,\ldots,\, y_p\in (0,\,1/2)$ 都存在一个全豪斯多夫维的 $\lambda \in (0,\,1/2]$ 的集合,使得 $y_1,\,\ldots,\, y_p \in K_\lambda$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信