{"title":"On a class of self-similar sets which contain finitely many common points","authors":"Kan Jiang, Derong Kong, Wenxia Li, Zhiqiang Wang","doi":"10.1017/prm.2024.66","DOIUrl":null,"url":null,"abstract":"For <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda \\in (0,\\,1/2]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline1.png\"/> </jats:alternatives> </jats:inline-formula> let <jats:inline-formula> <jats:alternatives> <jats:tex-math>$K_\\lambda \\subset \\mathbb {R}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline2.png\"/> </jats:alternatives> </jats:inline-formula> be a self-similar set generated by the iterated function system <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\{\\lambda x,\\, \\lambda x+1-\\lambda \\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline3.png\"/> </jats:alternatives> </jats:inline-formula>. Given <jats:inline-formula> <jats:alternatives> <jats:tex-math>$x\\in (0,\\,1/2)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline4.png\"/> </jats:alternatives> </jats:inline-formula>, let <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\Lambda (x)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline5.png\"/> </jats:alternatives> </jats:inline-formula> be the set of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda \\in (0,\\,1/2]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline6.png\"/> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$x\\in K_\\lambda$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline7.png\"/> </jats:alternatives> </jats:inline-formula>. In this paper we show that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\Lambda (x)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline8.png\"/> </jats:alternatives> </jats:inline-formula> is a topological Cantor set having zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any <jats:inline-formula> <jats:alternatives> <jats:tex-math>$y_1,\\,\\ldots,\\, y_p\\in (0,\\,1/2)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline9.png\"/> </jats:alternatives> </jats:inline-formula> there exists a full Hausdorff dimensional set of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\lambda \\in (0,\\,1/2]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline10.png\"/> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$y_1,\\,\\ldots,\\, y_p \\in K_\\lambda$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000660_inline11.png\"/> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"31 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.66","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For $\lambda \in (0,\,1/2]$ let $K_\lambda \subset \mathbb {R}$ be a self-similar set generated by the iterated function system $\{\lambda x,\, \lambda x+1-\lambda \}$. Given $x\in (0,\,1/2)$, let $\Lambda (x)$ be the set of $\lambda \in (0,\,1/2]$ such that $x\in K_\lambda$. In this paper we show that $\Lambda (x)$ is a topological Cantor set having zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any $y_1,\,\ldots,\, y_p\in (0,\,1/2)$ there exists a full Hausdorff dimensional set of $\lambda \in (0,\,1/2]$ such that $y_1,\,\ldots,\, y_p \in K_\lambda$.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.