Genetic connectivity and diversity between tropical and subtropical populations of the tropical horned sea star Protoreaster nodosus in the northwest Pacific
Yuichi Nakajima, Nina Yasuda, Yu Matsuki, Dan M. Arriesgado, Miguel D. Fortes, Wilfredo H. Uy, Wilfredo L. Campos, Kazuo Nadaoka, Chunlan Lian
{"title":"Genetic connectivity and diversity between tropical and subtropical populations of the tropical horned sea star Protoreaster nodosus in the northwest Pacific","authors":"Yuichi Nakajima, Nina Yasuda, Yu Matsuki, Dan M. Arriesgado, Miguel D. Fortes, Wilfredo H. Uy, Wilfredo L. Campos, Kazuo Nadaoka, Chunlan Lian","doi":"10.1007/s00227-024-04461-y","DOIUrl":null,"url":null,"abstract":"<p>Seagrass beds are ecologically and economically important coastal ecosystems, and seagrass-associated organisms are a key part of their biodiversity. Marine organisms that reproduce through broadcast spawning are likely to have less genetic differentiation among populations than those that use other modes of reproduction, but this has not been well studied. Here, we investigated the genetic diversity, genetic differentiation, and migration patterns of the seagrass-associated sea star <i>Protoreaster nodosus</i> across 12 sites spanning approximately 2500 km from the Ryukyu Archipelago, Japan, to the Philippines. We genotyped 405 individuals by using seven microsatellite loci and analyzed allelic richness and expected heterozygosity as indices of genetic diversity. Of these two indices, only expected heterozygosity decreased slightly with increasing latitude. These results suggest that genetic diversity has not clearly decreased, even in the isolated Ryukyu Archipelago populations. Geographic distance was significantly correlated with genetic differentiation (pairwise <i>F</i><sub>ST</sub>: − 0.005 to 0.049). However, populations in the Ryukyu Archipelago and the Philippines showed relatively low genetic structuring and the pairwise genetic differentiation between these regions was often non-significant. Analysis of historical migration rates showed bidirectional north–south migration, which appears to be influenced by the Kuroshio Current and its countercurrents.</p>","PeriodicalId":18365,"journal":{"name":"Marine Biology","volume":"11 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00227-024-04461-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Seagrass beds are ecologically and economically important coastal ecosystems, and seagrass-associated organisms are a key part of their biodiversity. Marine organisms that reproduce through broadcast spawning are likely to have less genetic differentiation among populations than those that use other modes of reproduction, but this has not been well studied. Here, we investigated the genetic diversity, genetic differentiation, and migration patterns of the seagrass-associated sea star Protoreaster nodosus across 12 sites spanning approximately 2500 km from the Ryukyu Archipelago, Japan, to the Philippines. We genotyped 405 individuals by using seven microsatellite loci and analyzed allelic richness and expected heterozygosity as indices of genetic diversity. Of these two indices, only expected heterozygosity decreased slightly with increasing latitude. These results suggest that genetic diversity has not clearly decreased, even in the isolated Ryukyu Archipelago populations. Geographic distance was significantly correlated with genetic differentiation (pairwise FST: − 0.005 to 0.049). However, populations in the Ryukyu Archipelago and the Philippines showed relatively low genetic structuring and the pairwise genetic differentiation between these regions was often non-significant. Analysis of historical migration rates showed bidirectional north–south migration, which appears to be influenced by the Kuroshio Current and its countercurrents.
期刊介绍:
Marine Biology publishes original and internationally significant contributions from all fields of marine biology. Special emphasis is given to articles which promote the understanding of life in the sea, organism-environment interactions, interactions between organisms, and the functioning of the marine biosphere.