{"title":"A Final Value Problem with a Non-local and a Source Term: Regularization by Truncation","authors":"Subhankar Mondal","doi":"10.1007/s10957-024-02460-z","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with recovering the solution of a final value problem associated with a parabolic equation involving a non linear source and a non-local term, which to the best of our knowledge has not been studied earlier. It is shown that the considered problem is ill-posed, and thus, some regularization method has to be employed in order to obtain stable approximations. In this regard, we obtain regularized approximations by solving some non linear integral equations which is derived by considering a truncated version of the Fourier expansion of the sought solution. Under different Gevrey smoothness assumptions on the exact solution, we provide parameter choice strategies and obtain the error estimates. A key tool in deriving such estimates is a version of Grönwalls’ inequality for iterated integrals, which perhaps, is proposed and analysed for the first time.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"91 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02460-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with recovering the solution of a final value problem associated with a parabolic equation involving a non linear source and a non-local term, which to the best of our knowledge has not been studied earlier. It is shown that the considered problem is ill-posed, and thus, some regularization method has to be employed in order to obtain stable approximations. In this regard, we obtain regularized approximations by solving some non linear integral equations which is derived by considering a truncated version of the Fourier expansion of the sought solution. Under different Gevrey smoothness assumptions on the exact solution, we provide parameter choice strategies and obtain the error estimates. A key tool in deriving such estimates is a version of Grönwalls’ inequality for iterated integrals, which perhaps, is proposed and analysed for the first time.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.