Effect of Thickness Stretching on Bending, Buckling, and Free Vibration of Functionally Graded Porous Beams

IF 3 3区 工程技术 Q2 ENGINEERING, CIVIL
Zhuangzhuang Wang, Liansheng Ma
{"title":"Effect of Thickness Stretching on Bending, Buckling, and Free Vibration of Functionally Graded Porous Beams","authors":"Zhuangzhuang Wang, Liansheng Ma","doi":"10.1142/s021945542550097x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the bending, buckling, and free vibration of functionally graded porous (FGP) beams are studied based on two beam theories (with or without considering thickness stretching, respectively). The effect of thickness stretching is obtained by comparing the results of the two theories. Two symmetrical distributions and one asymmetrical distribution of pores are considered. Both Young’s modulus and mass density of the FGP beams are in gradient variation in the thickness direction. The governing equations are constructed using Hamilton’s principle. The analytical solutions are obtained by Navier’s method. The effects of slenderness ratios, pore distribution, porosity and thickness stretching on FGP beams have been investigated. The results show that the inhomogeneity of FGP beams in the thickness direction is positively correlated with the effect of thickness stretching.</p>","PeriodicalId":54939,"journal":{"name":"International Journal of Structural Stability and Dynamics","volume":"47 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Stability and Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s021945542550097x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the bending, buckling, and free vibration of functionally graded porous (FGP) beams are studied based on two beam theories (with or without considering thickness stretching, respectively). The effect of thickness stretching is obtained by comparing the results of the two theories. Two symmetrical distributions and one asymmetrical distribution of pores are considered. Both Young’s modulus and mass density of the FGP beams are in gradient variation in the thickness direction. The governing equations are constructed using Hamilton’s principle. The analytical solutions are obtained by Navier’s method. The effects of slenderness ratios, pore distribution, porosity and thickness stretching on FGP beams have been investigated. The results show that the inhomogeneity of FGP beams in the thickness direction is positively correlated with the effect of thickness stretching.

厚度拉伸对功能分级多孔梁弯曲、屈曲和自由振动的影响
本文基于两种梁理论(分别考虑或不考虑厚度拉伸)研究了功能分层多孔(FGP)梁的弯曲、屈曲和自由振动。通过比较两种理论的结果,得出了厚度拉伸的影响。考虑了两种对称分布和一种不对称分布的孔隙。FGP 梁的杨氏模量和质量密度在厚度方向上都呈梯度变化。利用汉密尔顿原理构建了控制方程。通过纳维法得到了解析解。研究了细长比、孔隙分布、孔隙率和厚度拉伸对 FGP 梁的影响。结果表明,FGP 梁在厚度方向上的不均匀性与厚度拉伸的影响呈正相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
38.90%
发文量
291
审稿时长
4 months
期刊介绍: The aim of this journal is to provide a unique forum for the publication and rapid dissemination of original research on stability and dynamics of structures. Papers that deal with conventional land-based structures, aerospace structures, marine structures, as well as biostructures and micro- and nano-structures are considered. Papers devoted to all aspects of structural stability and dynamics (both transient and vibration response), ranging from mathematical formulations, novel methods of solutions, to experimental investigations and practical applications in civil, mechanical, aerospace, marine, bio- and nano-engineering will be published. The important subjects of structural stability and structural dynamics are placed together in this journal because they share somewhat fundamental elements. In recognition of the considerable research interests and recent proliferation of papers in these subjects, it is hoped that the journal may help bring together papers focused on related subjects, including the state-of-the-art surveys, so as to provide a more effective medium for disseminating the latest developments to researchers and engineers. This journal features a section for technical notes that allows researchers to publish their initial findings or new ideas more speedily. Discussions of papers and concepts will also be published so that researchers can have a vibrant and timely communication with others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信