Characterizations of Minimal Elements in a Non-commutative $$L_p$$ -Space

IF 1 3区 数学 Q1 MATHEMATICS
Ying Zhang, Lining Jiang
{"title":"Characterizations of Minimal Elements in a Non-commutative $$L_p$$ -Space","authors":"Ying Zhang, Lining Jiang","doi":"10.1007/s40840-024-01716-1","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(1\\le p&lt;\\infty \\)</span>, let <span>\\(L_p({\\mathcal {M}},\\tau )\\)</span> be the non-commutative <span>\\(L_p\\)</span>-space associated with a von Neumann algebra <span>\\({\\mathcal {M}}\\)</span>, where <span>\\({\\mathcal {M}}\\)</span> admits a normal semifinite faithful trace <span>\\(\\tau \\)</span>. Using the trace <span>\\(\\tau \\)</span>, Banach duality formula and Gâteaux derivative, this paper characterizes an element <span>\\(a\\in L_p({\\mathcal {M}},\\tau )\\)</span> such that </p><span>$$\\begin{aligned} \\Vert a\\Vert _p=\\inf \\{\\Vert a+b\\Vert _p: b\\in {\\mathcal {B}}_p\\}, \\end{aligned}$$</span><p>where <span>\\({\\mathcal {B}}_p\\)</span> is a closed linear subspace of <span>\\(L_p({\\mathcal {M}},\\tau )\\)</span> and <span>\\(\\Vert \\cdot \\Vert _p\\)</span> is the norm on <span>\\(L_p({\\mathcal {M}},\\tau )\\)</span>. Such an <i>a</i> is called <span>\\({\\mathcal {B}}_p\\)</span>-minimal. In particular, minimal elements related to the finite-diagonal-block type closed linear subspaces </p><span>$$\\begin{aligned} {\\mathcal {B}}_p=\\bigoplus \\limits _{i=1}^{\\infty } e_i {\\mathcal {S}} e_i \\end{aligned}$$</span><p>(converging with respect to <span>\\(\\Vert \\cdot \\Vert _p\\)</span>) are considered, where <span>\\(\\{e_i\\}_{i=1}^{\\infty }\\)</span> is a sequence of mutually orthogonal and <span>\\(\\tau \\)</span>-finite projections in a <span>\\(\\sigma \\)</span>-finite von Neumann algebra <span>\\({\\mathcal {M}}\\)</span>, and <span>\\({\\mathcal {S}}\\)</span> is the set of elements in <span>\\({\\mathcal {M}}\\)</span> with <span>\\(\\tau \\)</span>-finite supports.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"63 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01716-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For \(1\le p<\infty \), let \(L_p({\mathcal {M}},\tau )\) be the non-commutative \(L_p\)-space associated with a von Neumann algebra \({\mathcal {M}}\), where \({\mathcal {M}}\) admits a normal semifinite faithful trace \(\tau \). Using the trace \(\tau \), Banach duality formula and Gâteaux derivative, this paper characterizes an element \(a\in L_p({\mathcal {M}},\tau )\) such that

$$\begin{aligned} \Vert a\Vert _p=\inf \{\Vert a+b\Vert _p: b\in {\mathcal {B}}_p\}, \end{aligned}$$

where \({\mathcal {B}}_p\) is a closed linear subspace of \(L_p({\mathcal {M}},\tau )\) and \(\Vert \cdot \Vert _p\) is the norm on \(L_p({\mathcal {M}},\tau )\). Such an a is called \({\mathcal {B}}_p\)-minimal. In particular, minimal elements related to the finite-diagonal-block type closed linear subspaces

$$\begin{aligned} {\mathcal {B}}_p=\bigoplus \limits _{i=1}^{\infty } e_i {\mathcal {S}} e_i \end{aligned}$$

(converging with respect to \(\Vert \cdot \Vert _p\)) are considered, where \(\{e_i\}_{i=1}^{\infty }\) is a sequence of mutually orthogonal and \(\tau \)-finite projections in a \(\sigma \)-finite von Neumann algebra \({\mathcal {M}}\), and \({\mathcal {S}}\) is the set of elements in \({\mathcal {M}}\) with \(\tau \)-finite supports.

非交换 $$L_p$$ 空间中最小元素的特征
对于 \(1\le p<\infty \),让 \(L_p({\mathcal {M}},\tau )\) 是与冯-诺依曼代数 \({\mathcal {M}}\)相关的非交换 \(L_p\)-space ,其中 \({\mathcal {M}}\)允许一个正态半无限忠实迹 \(\tau\)。利用迹 (trace \(\tau \))、巴纳赫对偶公式和伽多导数,本文描述了元素 \(a\in L_p({\mathcal {M}},\tau )\) 的特征,即 $$(开始{aligned})。\Vert a\Vert _p=inf \{Vert a+b\Vert _p:其中 \({\mathcal {B}}_p\) 是 \(L_p({\mathcal {M}},\tau )\) 的封闭线性子空间,而 \(\Vert \cdot \Vert _p\) 是 \(L_p({\mathcal {M}},\tau )\) 上的规范。这样的 a 被称为 \({\mathcal {B}}_p\)-minimal.特别地,我们考虑了与有限对角块型封闭线性子空间 $$\begin{aligned} {mathcal {B}}_p=\bigoplus \limits _{i=1}^{infty } e_i {mathcal {S}} e_i \end{aligned}$$ (收敛于 \(\Vert \cdot \Vert _p\))相关的最小元素、其中,(\{e_i\}_{i=1}^{\infty }\) 是一个冯-诺依曼代数({\mathcal {M}\}) 中相互正交且无限的投影序列、和 \({\mathcal {S}}\) 是 \({\mathcal {M}}\) 中具有 \(\tau\)-finite 支持的元素的集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信