Morse theory on Lie groupoids

IF 1 3区 数学 Q1 MATHEMATICS
Cristian Ortiz, Fabricio Valencia
{"title":"Morse theory on Lie groupoids","authors":"Cristian Ortiz, Fabricio Valencia","doi":"10.1007/s00209-024-03525-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper we introduce Morse Lie groupoid morphisms and study their main properties. We show that this notion is Morita invariant which gives rise to a well defined notion of Morse function on differentiable stacks. We show a groupoid version of the Morse lemma which is used to describe the topological behavior of the critical subgroupoid levels of a Morse Lie groupoid morphism around its nondegenerate critical orbits. We also prove Morse type inequalities for certain separated differentiable stacks and construct a Morse double complex whose total cohomology is isomorphic to the Bott–Shulman–Stasheff cohomology of the underlying Lie groupoid. We provide several examples and applications.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"36 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03525-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce Morse Lie groupoid morphisms and study their main properties. We show that this notion is Morita invariant which gives rise to a well defined notion of Morse function on differentiable stacks. We show a groupoid version of the Morse lemma which is used to describe the topological behavior of the critical subgroupoid levels of a Morse Lie groupoid morphism around its nondegenerate critical orbits. We also prove Morse type inequalities for certain separated differentiable stacks and construct a Morse double complex whose total cohomology is isomorphic to the Bott–Shulman–Stasheff cohomology of the underlying Lie groupoid. We provide several examples and applications.

Abstract Image

李群上的莫尔斯理论
在本文中,我们介绍了莫尔斯列群态式,并研究了它们的主要性质。我们证明了这一概念是莫里塔不变的,从而产生了可微堆上定义明确的莫尔斯函数概念。我们展示了莫尔斯定理的一个类群版本,该定理用于描述莫尔斯Lie类群态的临界子类群水平在其非enerate临界轨道周围的拓扑行为。我们还证明了某些分离可微分堆栈的莫尔斯类型不等式,并构建了莫尔斯双复数,其总同调与底层Lie群的Bott-Shulman-Stasheff同调同构。我们提供了几个例子和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信