Structure constants in equivariant oriented cohomology of flag varieties

IF 1 3区 数学 Q1 MATHEMATICS
Rebecca Goldin, Changlong Zhong
{"title":"Structure constants in equivariant oriented cohomology of flag varieties","authors":"Rebecca Goldin, Changlong Zhong","doi":"10.1007/s00209-024-03485-w","DOIUrl":null,"url":null,"abstract":"<p>We introduce generalized Demazure operators for the equivariant oriented cohomology of the flag variety, which have specializations to various Demazure operators and Demazure–Lusztig operators in both equivariant cohomology and equivariant K-theory. In the context of the geometric basis of the equivariant oriented cohomology given by certain Bott–Samelson classes, we use these operators to obtain formulas for the structure constants arising in different bases. Specializing to divided difference operators and Demazure operators in singular cohomology and K-theory, we recover the formulas for structure constants of Schubert classes obtained in Goldin and Knutson (Pure Appl Math Q 17(4):1345–1385, 2021). Two specific specializations result in formulas for the the structure constants for cohomological and K-theoretic stable bases as well; as a corollary we reproduce a formula for the structure constants of the Segre–Schwartz–MacPherson basis previously obtained by Su (Math Zeitschrift 298:193–213, 2021). Our methods involve the study of the formal affine Demazure algebra, providing a purely algebraic proof of these results.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"35 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03485-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce generalized Demazure operators for the equivariant oriented cohomology of the flag variety, which have specializations to various Demazure operators and Demazure–Lusztig operators in both equivariant cohomology and equivariant K-theory. In the context of the geometric basis of the equivariant oriented cohomology given by certain Bott–Samelson classes, we use these operators to obtain formulas for the structure constants arising in different bases. Specializing to divided difference operators and Demazure operators in singular cohomology and K-theory, we recover the formulas for structure constants of Schubert classes obtained in Goldin and Knutson (Pure Appl Math Q 17(4):1345–1385, 2021). Two specific specializations result in formulas for the the structure constants for cohomological and K-theoretic stable bases as well; as a corollary we reproduce a formula for the structure constants of the Segre–Schwartz–MacPherson basis previously obtained by Su (Math Zeitschrift 298:193–213, 2021). Our methods involve the study of the formal affine Demazure algebra, providing a purely algebraic proof of these results.

旗变体等变定向同调中的结构常数
我们为旗变等变定向同调引入了广义德马祖里算子,这些算子与等变同调和等变 K 理论中的各种德马祖里算子和德马祖里-卢兹蒂格算子都有特化。在某些博特-萨缪尔森类给出的等变定向同调几何基的背景下,我们利用这些算子获得了在不同基中产生的结构常量公式。通过对奇异同调和 K 理论中的分差算子和 Demazure 算子的特殊化,我们恢复了 Goldin 和 Knutson (Pure Appl Math Q 17(4):1345-1385, 2021) 中得到的舒伯特类结构常数公式。通过两个具体的特殊化,我们还得到了同调稳定基和 K 理论稳定基的结构常量公式;作为一个推论,我们重现了苏氏(Math Zeitschrift 298:193-213,2021)之前得到的 Segre-Schwartz-MacPherson 基的结构常量公式。我们的方法涉及对形式仿射 Demazure 代数的研究,为这些结果提供了纯代数证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信