Hilbert Space Diffusion in Systems with Approximate Symmetries

Rahel L. Baumgartner, Luca V. Delacrétaz, Pranjal Nayak, Julian Sonner
{"title":"Hilbert Space Diffusion in Systems with Approximate Symmetries","authors":"Rahel L. Baumgartner, Luca V. Delacrétaz, Pranjal Nayak, Julian Sonner","doi":"arxiv-2405.19260","DOIUrl":null,"url":null,"abstract":"Random matrix theory (RMT) universality is the defining property of quantum\nmechanical chaotic systems, and can be probed by observables like the spectral\nform factor (SFF). In this paper, we describe systematic deviations from RMT\nbehaviour at intermediate time scales in systems with approximate symmetries.\nAt early times, the symmetries allow us to organize the Hilbert space into\napproximately decoupled sectors, each of which contributes independently to the\nSFF. At late times, the SFF transitions into the final ramp of the fully mixed\nchaotic Hamiltonian. For approximate continuous symmetries, the transitional\nbehaviour is governed by a universal process that we call Hilbert space\ndiffusion. The diffusion constant corresponding to this process is related to\nthe relaxation rate of the associated nearly conserved charge. By implementing\na chaotic sigma model for Hilbert-space diffusion, we formulate an analytic\ntheory of this process which agrees quantitatively with our numerical results\nfor different examples.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.19260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Random matrix theory (RMT) universality is the defining property of quantum mechanical chaotic systems, and can be probed by observables like the spectral form factor (SFF). In this paper, we describe systematic deviations from RMT behaviour at intermediate time scales in systems with approximate symmetries. At early times, the symmetries allow us to organize the Hilbert space into approximately decoupled sectors, each of which contributes independently to the SFF. At late times, the SFF transitions into the final ramp of the fully mixed chaotic Hamiltonian. For approximate continuous symmetries, the transitional behaviour is governed by a universal process that we call Hilbert space diffusion. The diffusion constant corresponding to this process is related to the relaxation rate of the associated nearly conserved charge. By implementing a chaotic sigma model for Hilbert-space diffusion, we formulate an analytic theory of this process which agrees quantitatively with our numerical results for different examples.
近似对称系统中的希尔伯特空间扩散
随机矩阵理论(RMT)的普遍性是量子力学混沌系统的定义属性,可以通过谱形因子(SFF)等观测指标来探测。在本文中,我们描述了具有近似对称性的系统在中间时间尺度上对 RMT 行为的系统性偏离。在早期,对称性允许我们将希尔伯特空间组织成近似解耦的扇区,每个扇区都对 SFF 有独立的贡献。在晚期,SFF 过渡到完全混合混沌哈密顿的最终斜坡。对于近似连续对称性,过渡行为受一个普遍过程的支配,我们称之为希尔伯特间隔扩散(Hilbert spacediffusion)。与这一过程相对应的扩散常数与相关近似守恒电荷的弛豫速率有关。通过实施希尔伯特空间扩散的混沌西格玛模型,我们提出了这一过程的分析理论,该理论与我们对不同例子的数值结果在数量上是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信