Multiple values-inflated bivariate INAR time series of counts: featuring zero–one inflated Poisson-Lindly case

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
Sangyeol Lee, Minyoung Jo
{"title":"Multiple values-inflated bivariate INAR time series of counts: featuring zero–one inflated Poisson-Lindly case","authors":"Sangyeol Lee, Minyoung Jo","doi":"10.1007/s42952-024-00269-0","DOIUrl":null,"url":null,"abstract":"<p>This study considers multiple values-inflated bivariate integer-valued autoregressive (MV-inflated BINAR) models. It develops the inferential procedures for parameter estimation on this model, which apply to constructing a change point test and outlier detection rule. We first introduce the MV-inflated BINAR model with one parameter exponential family and Poisson-Lindley innovations. Then, we propose a quasi-maximum likelihood estimator (QMLE) and divergence-based estimator featuring minimum density power divergence estimator (MDPDE) for robust estimation. To evaluate the performance of these estimators, we conduct Monte Carlo simulations and demonstrate the adequacy of MDPDE in zero–one inflated models. Real data analysis is also carried out using the number of monthly earthquake cases in the United States.</p>","PeriodicalId":49992,"journal":{"name":"Journal of the Korean Statistical Society","volume":"31 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Statistical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00269-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This study considers multiple values-inflated bivariate integer-valued autoregressive (MV-inflated BINAR) models. It develops the inferential procedures for parameter estimation on this model, which apply to constructing a change point test and outlier detection rule. We first introduce the MV-inflated BINAR model with one parameter exponential family and Poisson-Lindley innovations. Then, we propose a quasi-maximum likelihood estimator (QMLE) and divergence-based estimator featuring minimum density power divergence estimator (MDPDE) for robust estimation. To evaluate the performance of these estimators, we conduct Monte Carlo simulations and demonstrate the adequacy of MDPDE in zero–one inflated models. Real data analysis is also carried out using the number of monthly earthquake cases in the United States.

Abstract Image

多值膨胀的双变量 INAR 计数时间序列:以零一膨胀的泊松-林德利案例为特色
本研究考虑了多值膨胀双变量整数值自回归(MV-infflated BINAR)模型。它开发了该模型参数估计的推理程序,适用于构建变化点检验和离群点检测规则。我们首先介绍了具有单参数指数族和泊松-林德利创新的 MV 充气 BINAR 模型。然后,我们提出了准最大似然估计器(QMLE)和基于发散的估计器,其中最小密度功率发散估计器(MDPDE)用于稳健估计。为了评估这些估计器的性能,我们进行了蒙特卡罗模拟,并证明了 MDPDE 在零一膨胀模型中的充分性。我们还利用美国每月地震案例的数量进行了真实数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Korean Statistical Society
Journal of the Korean Statistical Society 数学-统计学与概率论
CiteScore
1.30
自引率
0.00%
发文量
37
审稿时长
3 months
期刊介绍: The Journal of the Korean Statistical Society publishes research articles that make original contributions to the theory and methodology of statistics and probability. It also welcomes papers on innovative applications of statistical methodology, as well as papers that give an overview of current topic of statistical research with judgements about promising directions for future work. The journal welcomes contributions from all countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信