The Feynman–Lagerstrom Criterion for Boundary Layers

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Theodore D. Drivas, Sameer Iyer, Trinh T. Nguyen
{"title":"The Feynman–Lagerstrom Criterion for Boundary Layers","authors":"Theodore D. Drivas,&nbsp;Sameer Iyer,&nbsp;Trinh T. Nguyen","doi":"10.1007/s00205-024-01991-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study the boundary layer theory for slightly viscous stationary flows forced by an imposed slip velocity at the boundary. According to the theory of Prandtl (in: International mathematical congress, Heidelberg, 1904; see Gesammelte Abhandlungen II, 1961) and Batchelor (J Fluid Mech 1:177–190, 1956), any Euler solution arising in this limit and consisting of a single “eddy” must have constant vorticity. Feynman and Lagerstrom (in: Proceedings of IX international congress on applied mechanics, 1956) gave a procedure to select the value of this vorticity by demanding a <i>necessary</i> condition for the existence of a periodic Prandtl boundary layer description. In the case of the disc, the choice—known to Batchelor (1956) and Wood (J Fluid Mech 2:77–87, 1957)—is explicit in terms of the slip forcing. For domains with non-constant curvature, Feynman and Lagerstrom give an approximate formula for the choice which is in fact only implicitly defined and must be determined together with the boundary layer profile. We show that this condition is also sufficient for the existence of a periodic boundary layer described by the Prandtl equations. Due to the quasilinear coupling between the solution and the selected vorticity, we devise a delicate iteration scheme coupled with a high-order energy method that captures and controls the implicit selection mechanism.\n</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01991-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the boundary layer theory for slightly viscous stationary flows forced by an imposed slip velocity at the boundary. According to the theory of Prandtl (in: International mathematical congress, Heidelberg, 1904; see Gesammelte Abhandlungen II, 1961) and Batchelor (J Fluid Mech 1:177–190, 1956), any Euler solution arising in this limit and consisting of a single “eddy” must have constant vorticity. Feynman and Lagerstrom (in: Proceedings of IX international congress on applied mechanics, 1956) gave a procedure to select the value of this vorticity by demanding a necessary condition for the existence of a periodic Prandtl boundary layer description. In the case of the disc, the choice—known to Batchelor (1956) and Wood (J Fluid Mech 2:77–87, 1957)—is explicit in terms of the slip forcing. For domains with non-constant curvature, Feynman and Lagerstrom give an approximate formula for the choice which is in fact only implicitly defined and must be determined together with the boundary layer profile. We show that this condition is also sufficient for the existence of a periodic boundary layer described by the Prandtl equations. Due to the quasilinear coupling between the solution and the selected vorticity, we devise a delicate iteration scheme coupled with a high-order energy method that captures and controls the implicit selection mechanism.

Abstract Image

Abstract Image

边界层的费曼-拉格斯特罗姆准则
我们研究了在边界施加滑移速度的情况下,轻微粘性静止流的边界层理论。根据普朗特(Prandtl)的理论(in:国际数学大会,海德堡,1904 年;见 Gesammelte Abhandlungen II,1961 年)和 Batchelor(J Fluid Mech 1:177-190,1956 年)的理论,在此极限下产生的由单个 "涡 "组成的欧拉解必须具有恒定的涡度。费曼和拉格斯特罗姆(《第九届国际应用力学大会论文集》,1956 年)给出了通过要求存在周期性普朗特边界层描述的必要条件来选择涡度值的程序。在圆盘的情况下,Batchelor (1956) 和 Wood (J Fluid Mech 2:77-87, 1957) 所知道的选择是明确的滑移强迫。对于曲率不恒定的域,Feynman 和 Lagerstrom 给出了选择的近似公式,但实际上这只是隐含定义,必须与边界层剖面一起确定。我们证明了这一条件对于普朗特方程描述的周期性边界层的存在也是足够的。由于解与所选涡度之间存在准线性耦合,我们设计了一种与高阶能量法相结合的微妙迭代方案,以捕捉和控制隐式选择机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信