Indistinguishable asymptotic pairs and multidimensional Sturmian configurations

Pub Date : 2024-05-31 DOI:10.1017/etds.2024.39
SEBASTIÁN BARBIERI, SÉBASTIEN LABBÉ
{"title":"Indistinguishable asymptotic pairs and multidimensional Sturmian configurations","authors":"SEBASTIÁN BARBIERI, SÉBASTIEN LABBÉ","doi":"10.1017/etds.2024.39","DOIUrl":null,"url":null,"abstract":"Two asymptotic configurations on a full <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000397_inline1.png\"/> <jats:tex-math> $\\mathbb {Z}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-shift are indistinguishable if, for every finite pattern, the associated sets of occurrences in each configuration coincide up to a finitely supported permutation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000397_inline2.png\"/> <jats:tex-math> $\\mathbb {Z}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We prove that indistinguishable asymptotic pairs satisfying a ‘flip condition’ are characterized by their pattern complexity on finite connected supports. Furthermore, we prove that uniformly recurrent indistinguishable asymptotic pairs satisfying the flip condition are described by codimension-one (dimension of the internal space) cut and project schemes, which symbolically correspond to multidimensional Sturmian configurations. Together, the two results provide a generalization to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000397_inline3.png\"/> <jats:tex-math> $\\mathbb {Z}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the characterization of Sturmian sequences by their factor complexity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000397_inline4.png\"/> <jats:tex-math> $n+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Many open questions are raised by the current work and are listed in the introduction.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two asymptotic configurations on a full $\mathbb {Z}^d$ -shift are indistinguishable if, for every finite pattern, the associated sets of occurrences in each configuration coincide up to a finitely supported permutation of $\mathbb {Z}^d$ . We prove that indistinguishable asymptotic pairs satisfying a ‘flip condition’ are characterized by their pattern complexity on finite connected supports. Furthermore, we prove that uniformly recurrent indistinguishable asymptotic pairs satisfying the flip condition are described by codimension-one (dimension of the internal space) cut and project schemes, which symbolically correspond to multidimensional Sturmian configurations. Together, the two results provide a generalization to $\mathbb {Z}^d$ of the characterization of Sturmian sequences by their factor complexity $n+1$ . Many open questions are raised by the current work and are listed in the introduction.
分享
查看原文
无差别渐近对和多维斯特尔米构型
如果对于每个有限模式,每个配置中的相关出现集都重合到 $\mathbb {Z}^d$ 的有限支持排列,那么在一个完整的 $\mathbb {Z}^d$ 移位上的两个渐近配置是不可区分的。我们证明,满足 "翻转条件 "的不可区分渐近对的特征是它们在有限连接支持上的模式复杂性。此外,我们还证明了满足翻转条件的均匀递归不可区分渐近对是由标度为一的(内部空间的维度)切割和投影方案描述的,这些方案象征性地对应于多维斯特米安构型。这两个结果共同提供了对$\mathbb {Z}^d$ Sturmian序列的因子复杂度$n+1$的概括。目前的工作提出了许多悬而未决的问题,这些问题已在引言中列出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信