Dedekind-MacNeille and related completions: subfitness, regularity, and Booleanness

G. Bezhanishvili, F. Dashiell Jr, A. Moshier, J. Walters-Wayland
{"title":"Dedekind-MacNeille and related completions: subfitness, regularity, and Booleanness","authors":"G. Bezhanishvili, F. Dashiell Jr, A. Moshier, J. Walters-Wayland","doi":"arxiv-2405.19171","DOIUrl":null,"url":null,"abstract":"Completions play an important r\\^ole for studying structure by supplying\nelements that in some sense ``ought to be.\" Among these, the Dedekind-MacNeille\ncompletion is of particular importance. In 1968 Janowitz provided necessary and\nsufficient conditions for it to be subfit or Boolean. Another natural\nseparation axiom situated between the two is regularity. We explore similar\ncharacterizations of when closely related completions are subfit, regular, or\nBoolean. We are mainly interested in the Bruns-Lakser, ideal, and canonical\ncompletions, which are useful in pointfree topology since (unlike the\nDedekind-MacNeille completion) they satisfy stronger forms of distributivity.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.19171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Completions play an important r\^ole for studying structure by supplying elements that in some sense ``ought to be." Among these, the Dedekind-MacNeille completion is of particular importance. In 1968 Janowitz provided necessary and sufficient conditions for it to be subfit or Boolean. Another natural separation axiom situated between the two is regularity. We explore similar characterizations of when closely related completions are subfit, regular, or Boolean. We are mainly interested in the Bruns-Lakser, ideal, and canonical completions, which are useful in pointfree topology since (unlike the Dedekind-MacNeille completion) they satisfy stronger forms of distributivity.
戴德金-麦克尼尔和相关补全:次拟合、正则性和布尔性
完形通过提供在某种意义上 "应该是 "的元素,在研究结构方面发挥着重要作用。其中,Dedekind-MacNeille补全尤其重要。1968年,扬诺维茨为它提供了亚拟合或布尔的必要条件和充分条件。介于两者之间的另一个自然分离公理是正则性。我们探讨了密切相关的完形是亚拟合、正则还是布尔的类似特征。我们主要关注 Bruns-Lakser、ideal 和 canonical 补充,它们在无点拓扑学中非常有用,因为(与 Dedekind-MacNeille 补充不同)它们满足更强形式的分布性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信