BPS invariants from p-adic integrals

IF 1.3 1区 数学 Q1 MATHEMATICS
Francesca Carocci, Giulio Orecchia, Dimitri Wyss
{"title":"BPS invariants from p-adic integrals","authors":"Francesca Carocci, Giulio Orecchia, Dimitri Wyss","doi":"10.1112/s0010437x24007176","DOIUrl":null,"url":null,"abstract":"<p>We define <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span>-adic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {BPS}$</span></span></img></span></span> or <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$p\\mathrm {BPS}$</span></span></img></span></span> invariants for moduli spaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {M}_{\\beta,\\chi }$</span></span></img></span></span> of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$F$</span></span></img></span></span>. Our definition relies on a canonical measure <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mu _{\\rm can}$</span></span></img></span></span> on the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$F$</span></span></img></span></span>-analytic manifold associated to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {M}_{\\beta,\\chi }$</span></span></img></span></span> and the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$p\\mathrm {BPS}$</span></span></img></span></span> invariants are integrals of natural <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline12.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {G}}_m$</span></span></img></span></span> gerbes with respect to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline14.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mu _{\\rm can}$</span></span></span></span>. A similar construction can be done for meromorphic and usual Higgs bundles on a curve. Our main theorem is a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline15.png\"/><span data-mathjax-type=\"texmath\"><span>$\\chi$</span></span></span></span>-independence result for these <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline16.png\"/><span data-mathjax-type=\"texmath\"><span>$p\\mathrm {BPS}$</span></span></span></span> invariants. For one-dimensional sheaves on del Pezzo surfaces and meromorphic Higgs bundles, we obtain as a corollary the agreement of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline17.png\"/><span data-mathjax-type=\"texmath\"><span>$p\\mathrm {BPS}$</span></span></span></span> with usual <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline18.png\"/><span data-mathjax-type=\"texmath\"><span>$\\mathrm {BPS}$</span></span></span></span> invariants through a result of Maulik and Shen [<span>Cohomological</span> <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529183756228-0512:S0010437X24007176:S0010437X24007176_inline19.png\"/><span data-mathjax-type=\"texmath\"><span>$\\chi$</span></span></span></span><span>-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles</span>, Geom. Topol. <span>27</span> (2023), 1539–1586].</p>","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/s0010437x24007176","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define Abstract Image$p$-adic Abstract Image$\mathrm {BPS}$ or Abstract Image$p\mathrm {BPS}$ invariants for moduli spaces Abstract Image$\operatorname {M}_{\beta,\chi }$ of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field Abstract Image$F$. Our definition relies on a canonical measure Abstract Image$\mu _{\rm can}$ on the Abstract Image$F$-analytic manifold associated to Abstract Image$\operatorname {M}_{\beta,\chi }$ and the Abstract Image$p\mathrm {BPS}$ invariants are integrals of natural Abstract Image${\mathbb {G}}_m$ gerbes with respect to Abstract Image$\mu _{\rm can}$. A similar construction can be done for meromorphic and usual Higgs bundles on a curve. Our main theorem is a Abstract Image$\chi$-independence result for these Abstract Image$p\mathrm {BPS}$ invariants. For one-dimensional sheaves on del Pezzo surfaces and meromorphic Higgs bundles, we obtain as a corollary the agreement of Abstract Image$p\mathrm {BPS}$ with usual Abstract Image$\mathrm {BPS}$ invariants through a result of Maulik and Shen [Cohomological Abstract Image$\chi$-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles, Geom. Topol. 27 (2023), 1539–1586].

从 p-二次积分看 BPS 不变量
我们通过对非阿基米德局部场 $F$ 的积分,定义了 del Pezzo 和 K3 曲面上一维剪切的模空间 $operatorname {M}_{\beta,\chi }$ 的 $p$-adic $\mathrm {BPS}$ 或 $p\mathrm {BPS}$ 不变量。我们的定义依赖于与 $\operatorname {M}_{\beta,\chi }$ 相关联的 $F$-analytic 流形上的规范度量 $\mu _{\rm can}$ ,而 $p\mathrm {BPS}$ 不变式是自然 ${mathbb {G}}_m$ gerbes 关于 $\mu _{\rm can}$ 的积分。类似的构造也可以用于曲线上的全形希格斯束和通常希格斯束。我们的主要定理是这些 $p\mathrm {BPS}$ 不变量的 $\chi$-independence 结果。对于del Pezzo曲面上的一维剪切和全形希格斯束,我们通过Maulik和Shen的一个结果[Cohomological $\chi$-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles, Geom.Topol.27 (2023), 1539-1586].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信