The number of spanning trees in $$K_n$$ -complement of a bipartite graph

Pub Date : 2024-06-01 DOI:10.1007/s10801-024-01341-y
Helin Gong, Yu Gong, Jun Ge
{"title":"The number of spanning trees in $$K_n$$ -complement of a bipartite graph","authors":"Helin Gong, Yu Gong, Jun Ge","doi":"10.1007/s10801-024-01341-y","DOIUrl":null,"url":null,"abstract":"<p>For a subgraph <i>G</i> of a complete graph <span>\\(K_n\\)</span>, the <span>\\(K_n\\)</span>-complement of <i>G</i>, denoted by <span>\\(K_n-G\\)</span>, is the graph obtained from <span>\\(K_n-G\\)</span> by removing all the edges of <i>G</i>. In this paper, we express the number of spanning trees of the <span>\\(K_n\\)</span>-complement <span>\\(K_n-G\\)</span> of a bipartite graph <i>G</i> in terms of the determinant of the biadjcency matrices of all induced balanced bipartite subgraphs of <i>G</i>, which are nonsingular, and we derive formulas of the number of spanning trees of <span>\\(K_n-G\\)</span> for various important classes of bipartite graphs <i>G</i>, some of which generalize some previous results.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01341-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a subgraph G of a complete graph \(K_n\), the \(K_n\)-complement of G, denoted by \(K_n-G\), is the graph obtained from \(K_n-G\) by removing all the edges of G. In this paper, we express the number of spanning trees of the \(K_n\)-complement \(K_n-G\) of a bipartite graph G in terms of the determinant of the biadjcency matrices of all induced balanced bipartite subgraphs of G, which are nonsingular, and we derive formulas of the number of spanning trees of \(K_n-G\) for various important classes of bipartite graphs G, some of which generalize some previous results.

Abstract Image

分享
查看原文
双方形图的$K_n$$补集中生成树的数目
对于完整图 \(K_n\)的子图 G,G 的 \(K_n\)-补集(用 \(K_n-G\)表示)是从 \(K_n-G\)中删除 G 的所有边而得到的图。在本文中,我们用 G 的所有诱导平衡双方子图的双向矩阵的行列式来表示双方子图 G 的 \(K_n\)-complement \(K_n-G\)的生成树数,这些矩阵都是非奇异的,我们还推导出了各种重要类别的双方子图 G 的 \(K_n\)-complement \(K_n-G\)的生成树数公式,其中一些公式概括了之前的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信