On the Energy Equality via a Priori Bound on the Velocity for Axisymmetric 3D Navier–Stokes Equations

Jiaqi Yang
{"title":"On the Energy Equality via a Priori Bound on the Velocity for Axisymmetric 3D Navier–Stokes Equations","authors":"Jiaqi Yang","doi":"10.1007/s12220-024-01701-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with the energy equality for axisymmetric weak solutions of the 3D Navier–Stokes equations. The classical Shinbrot condition says that if the weak solution <i>u</i> of the Navier–Stokes equations belongs <span>\\(L^q(0,T;L^p(\\mathbb {R}^3))\\)</span> with <span>\\(\\frac{1}{q}+\\frac{1}{p}=\\frac{1}{2}\\)</span> and <span>\\(p\\ge 4\\)</span>, then <i>u</i> must satisfy the energy equality. For the axisymmetric Navier–Stokes equations, in our previous paper, we found that it is enough to impose the Shinbrot condition to <span>\\(\\tilde{u}=u^re_r+u^z e_z\\)</span>. The recent papers (Chiun-Chuan et al., Commun PDE 34(1–3):203–232, 2009; Koch et al., Acta Math 203(1):83–105, 2009) tell us if </p><span>$$\\begin{aligned} |\\tilde{u}|\\le \\frac{1}{r}\\,,\\quad 0&lt; r\\le 1\\,, \\end{aligned}$$</span>(0.1)<p>then <i>u</i> is smooth , therefore the energy equality holds. It is natural to ask the relation between a priori bound on the velocity and the energy conservation. The aim of this paper is to investigate this problem. We shall prove that if </p><span>$$\\begin{aligned} |\\tilde{u}|\\le \\frac{1}{r^d}\\,,\\quad 0&lt; r\\le 1\\,,\\quad d&gt;1\\,, \\end{aligned}$$</span>(0.2)<p>and </p><span>$$\\begin{aligned} \\nabla \\tilde{u}\\in L^{\\frac{6d-4}{2d-1}}(0,T;L^{2}(\\mathbb {R}^3))\\,, \\end{aligned}$$</span>(0.3)<p>then the energy equality holds.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01701-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the energy equality for axisymmetric weak solutions of the 3D Navier–Stokes equations. The classical Shinbrot condition says that if the weak solution u of the Navier–Stokes equations belongs \(L^q(0,T;L^p(\mathbb {R}^3))\) with \(\frac{1}{q}+\frac{1}{p}=\frac{1}{2}\) and \(p\ge 4\), then u must satisfy the energy equality. For the axisymmetric Navier–Stokes equations, in our previous paper, we found that it is enough to impose the Shinbrot condition to \(\tilde{u}=u^re_r+u^z e_z\). The recent papers (Chiun-Chuan et al., Commun PDE 34(1–3):203–232, 2009; Koch et al., Acta Math 203(1):83–105, 2009) tell us if

$$\begin{aligned} |\tilde{u}|\le \frac{1}{r}\,,\quad 0< r\le 1\,, \end{aligned}$$(0.1)

then u is smooth , therefore the energy equality holds. It is natural to ask the relation between a priori bound on the velocity and the energy conservation. The aim of this paper is to investigate this problem. We shall prove that if

$$\begin{aligned} |\tilde{u}|\le \frac{1}{r^d}\,,\quad 0< r\le 1\,,\quad d>1\,, \end{aligned}$$(0.2)

and

$$\begin{aligned} \nabla \tilde{u}\in L^{\frac{6d-4}{2d-1}}(0,T;L^{2}(\mathbb {R}^3))\,, \end{aligned}$$(0.3)

then the energy equality holds.

通过轴对称三维纳维-斯托克斯方程的速度先验约束论能量相等
本文关注三维纳维-斯托克斯方程轴对称弱解的能量相等问题。经典的辛布罗特条件说,如果纳维-斯托克斯方程的弱解 u 属于 \(L^q(0,T;L^p(\mathbb {R}^3))\) with \(\frac{1}{q}+\frac{1}{p}=\frac{1}{2}\) and\(p\ge 4\), 那么 u 必须满足能量相等。对于轴对称纳维-斯托克斯方程,在我们之前的论文中,我们发现施加申布罗特条件(\tilde{u}=u^re_r+u^z e_z)就足够了。最近的论文(Chiun-Chuan 等,Commun PDE 34(1-3):203-232,2009;Koch 等,Acta Math 203(1):83-105,2009)告诉我们,如果 $$\begin{aligned}|\tilde{u}|le \frac{1}{r}\, \quad 0< r\le 1\,, \end{aligned}$$(0.1)then u is smooth , therefore the energy equality holds.我们自然会问速度的先验约束与能量守恒之间的关系。本文旨在研究这一问题。我们将证明,如果 $$\begin{aligned}|tilde{u}|le \frac{1}{r^d}\, \quad 0< r\le 1\, \quad d>1\,, \end{aligned}$$(0.2)和 $$\begin{aligned}\in L^{frac{6d-4}{2d-1}}(0,T;L^{2}(\mathbb {R}^3))\,,\end{aligned}$(0.3)then the energy equality holds.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信