Lorentzian metric spaces and their Gromov–Hausdorff convergence

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
E. Minguzzi, S. Suhr
{"title":"Lorentzian metric spaces and their Gromov–Hausdorff convergence","authors":"E. Minguzzi,&nbsp;S. Suhr","doi":"10.1007/s11005-024-01813-z","DOIUrl":null,"url":null,"abstract":"<div><p>We present an abstract approach to Lorentzian Gromov–Hausdorff distance and convergence, and an alternative approach to Lorentzian length spaces that does not use auxiliary “positive signature” metrics or other unobserved fields. We begin by defining a notion of (abstract) bounded Lorentzian metric space which is sufficiently general to comprise compact causally convex subsets of globally hyperbolic spacetimes and causets. We define the Gromov–Hausdorff distance and show that two bounded Lorentzian metric spaces at zero GH distance are indeed both isometric and homeomorphic. Then we show how to define from the Lorentzian distance, beside topology, the causal relation and the causal curves for these spaces, obtaining useful limit curve theorems. Next, we define Lorentzian (length) prelength spaces via suitable (maximal) chronal connectedness properties. These definitions are proved to be stable under GH limits. Furthermore, we define bounds on sectional curvature for our Lorentzian length spaces and prove that they are also stable under GH limits. We conclude with a (pre)compactness theorem.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01813-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01813-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present an abstract approach to Lorentzian Gromov–Hausdorff distance and convergence, and an alternative approach to Lorentzian length spaces that does not use auxiliary “positive signature” metrics or other unobserved fields. We begin by defining a notion of (abstract) bounded Lorentzian metric space which is sufficiently general to comprise compact causally convex subsets of globally hyperbolic spacetimes and causets. We define the Gromov–Hausdorff distance and show that two bounded Lorentzian metric spaces at zero GH distance are indeed both isometric and homeomorphic. Then we show how to define from the Lorentzian distance, beside topology, the causal relation and the causal curves for these spaces, obtaining useful limit curve theorems. Next, we define Lorentzian (length) prelength spaces via suitable (maximal) chronal connectedness properties. These definitions are proved to be stable under GH limits. Furthermore, we define bounds on sectional curvature for our Lorentzian length spaces and prove that they are also stable under GH limits. We conclude with a (pre)compactness theorem.

Abstract Image

洛伦兹度量空间及其格罗莫夫-豪斯多夫收敛性
我们提出了洛伦兹格罗莫夫-豪斯多夫距离和收敛的抽象方法,以及不使用辅助 "正签名 "度量或其他未观测场的洛伦兹长度空间的替代方法。我们首先定义了一个(抽象)有界洛伦兹度量空间的概念,它具有足够的通用性,可以包含全局双曲时空和因果集的紧凑因果凸子集。我们定义了格罗莫夫-豪斯多夫距离(Gromov-Hausdorff distance),并证明了在零 GH 距离上的两个有界洛伦兹度量空间确实既等距又同构。然后,我们展示了如何从洛伦兹距离定义这些空间的拓扑、因果关系和因果曲线,并得到有用的极限曲线定理。接下来,我们通过合适的(最大)时序连通性属性定义洛伦兹(长度)前长空间。这些定义被证明在 GH 极限下是稳定的。此外,我们还定义了洛伦兹长度空间的截面曲率边界,并证明它们在 GH 极限下也是稳定的。最后,我们提出一个(前)紧凑性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信