Jinguo Sun, Yupan Bao, Jonas Ravelid, Alexander A. Konnov, Andreas Ehn
{"title":"Plasma-assisted NH3/air flame: Simultaneous LIF measurements of O and OH","authors":"Jinguo Sun, Yupan Bao, Jonas Ravelid, Alexander A. Konnov, Andreas Ehn","doi":"10.1016/j.combustflame.2024.113529","DOIUrl":null,"url":null,"abstract":"<div><p>In the emerging field of plasma-assisted ammonia (NH<sub>3</sub>) combustion, the evolution of key intermediate species has rarely been reported. This work establishes a simultaneous measurement system of laser-induced fluorescence (LIF) for hydroxyl (OH) and quantitative two-photon-absorption LIF for atomic oxygen (O), to explore the OH and O dynamics in an NH<sub>3</sub>/air flame affected by a nanosecond (ns) pulsed plasma discharge. Firstly, with the plasma on, the molar fraction of O is quantified to reach 8.7 × 10<sup>–3</sup> in the burnt zone, about two orders of magnitude higher than that without plasma. In addition, the OH LIF signal intensity is four times higher, indicating a significant kinetic enhancement. Then, the spatial characteristics of OH and O are discussed and compared, showing remarkable discrepancy. The discrepancy between them indicates that O production is dominated by plasma kinetics, however, the OH production, primarily stemming from reactions between O and NH<sub>3</sub>/H<sub>2</sub>O, still depends on parameters associated with combustion kinetics. We further study the temporal dynamics of O and OH. It is concluded that O and OH peaks at 1.75 μs are mainly attributed to the pathway of quenching of the excited species. After that, O and OH start to decay but show significant differences between unburnt and burnt zones, which are characterized by a single-exponential decay and a bi-exponential decay, respectively. In the unburnt zone, the OH decay is much slower than the O decay due to the diverse pathways for OH production. In the burnt zone, the bi-exponential decay of O and OH can essentially be regarded as a process in which the NH<sub>3</sub>/air reactive system reaches chemical equilibrium. At this stage, the impacts of the excited species from the plasma gradually diminish and combustion kinetics dominates alone.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010218024002384/pdfft?md5=f5e4006021249257e95e94129f145a8e&pid=1-s2.0-S0010218024002384-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024002384","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In the emerging field of plasma-assisted ammonia (NH3) combustion, the evolution of key intermediate species has rarely been reported. This work establishes a simultaneous measurement system of laser-induced fluorescence (LIF) for hydroxyl (OH) and quantitative two-photon-absorption LIF for atomic oxygen (O), to explore the OH and O dynamics in an NH3/air flame affected by a nanosecond (ns) pulsed plasma discharge. Firstly, with the plasma on, the molar fraction of O is quantified to reach 8.7 × 10–3 in the burnt zone, about two orders of magnitude higher than that without plasma. In addition, the OH LIF signal intensity is four times higher, indicating a significant kinetic enhancement. Then, the spatial characteristics of OH and O are discussed and compared, showing remarkable discrepancy. The discrepancy between them indicates that O production is dominated by plasma kinetics, however, the OH production, primarily stemming from reactions between O and NH3/H2O, still depends on parameters associated with combustion kinetics. We further study the temporal dynamics of O and OH. It is concluded that O and OH peaks at 1.75 μs are mainly attributed to the pathway of quenching of the excited species. After that, O and OH start to decay but show significant differences between unburnt and burnt zones, which are characterized by a single-exponential decay and a bi-exponential decay, respectively. In the unburnt zone, the OH decay is much slower than the O decay due to the diverse pathways for OH production. In the burnt zone, the bi-exponential decay of O and OH can essentially be regarded as a process in which the NH3/air reactive system reaches chemical equilibrium. At this stage, the impacts of the excited species from the plasma gradually diminish and combustion kinetics dominates alone.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.