A Characterization of Graphs with Semitotal Domination Number One-Third Their Order

Pub Date : 2024-05-30 DOI:10.1007/s00373-024-02800-w
Jie Chen, Cai-Xia Wang, Yi-Ping Liang, Shou-Jun Xu
{"title":"A Characterization of Graphs with Semitotal Domination Number One-Third Their Order","authors":"Jie Chen, Cai-Xia Wang, Yi-Ping Liang, Shou-Jun Xu","doi":"10.1007/s00373-024-02800-w","DOIUrl":null,"url":null,"abstract":"<p>In an isolate-free graph <i>G</i>, a subset <i>S</i> of vertices is a <i>semitotal dominating set</i> of <i>G</i> if it is a dominating set of <i>G</i> and every vertex in <i>S</i> is within distance 2 of another vertex of <i>S</i>. The <i>semitotal domination number</i> of <i>G</i>, denoted by <span>\\(\\gamma _{t2}(G)\\)</span>, is the minimum cardinality of a semitotal dominating set in <i>G</i>. Zhu et al. (Gr Combin 33, 1119–1130, 2017) proved that if <span>\\(G\\notin \\{K_4,N_2\\}\\)</span> is a connected claw-free cubic graph of order <i>n</i>, then <span>\\(\\gamma _{t2}(G)\\le \\frac{n}{3}\\)</span>, which is sharp. They proposed the problem of characterizing the extremal graphs. We completely solve this problem. There are ten classes of graphs, three of which are infinite families of graphs.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02800-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In an isolate-free graph G, a subset S of vertices is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number of G, denoted by \(\gamma _{t2}(G)\), is the minimum cardinality of a semitotal dominating set in G. Zhu et al. (Gr Combin 33, 1119–1130, 2017) proved that if \(G\notin \{K_4,N_2\}\) is a connected claw-free cubic graph of order n, then \(\gamma _{t2}(G)\le \frac{n}{3}\), which is sharp. They proposed the problem of characterizing the extremal graphs. We completely solve this problem. There are ten classes of graphs, three of which are infinite families of graphs.

Abstract Image

分享
查看原文
具有三分之一阶半总支配数的图的特征
在无孤立图 G 中,如果顶点子集 S 是 G 的支配集,且 S 中的每个顶点与 S 中另一个顶点的距离都在 2 以内,则该顶点子集 S 是 G 的半总支配集。G 的半总支配数用 \(\gamma _{t2}(G)\) 表示,它是 G 中半总支配集的最小卡片度。Zhu 等人(Gr Combin 33, 1119-1130, 2017)证明了如果 \(G\notin \{K_4,N_2\}\) 是阶数为 n 的连通无爪立方图,那么 \(\gamma _{t2}(G)\le \frac{n}{3}\) 是尖锐的。他们提出了极值图的特征问题。我们完全解决了这个问题。有十类图,其中三类是无限图族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信