Irreducible Pairings and Indecomposable Tournaments

Pub Date : 2024-05-30 DOI:10.1007/s00373-024-02803-7
Houmem Belkhechine, Cherifa Ben Salha, Rim Romdhane
{"title":"Irreducible Pairings and Indecomposable Tournaments","authors":"Houmem Belkhechine, Cherifa Ben Salha, Rim Romdhane","doi":"10.1007/s00373-024-02803-7","DOIUrl":null,"url":null,"abstract":"<p>We only consider finite structures. With every totally ordered set <i>V</i> and a subset <i>P</i> of <span>\\(\\left( {\\begin{array}{c}V\\\\ 2\\end{array}}\\right) \\)</span>, we associate the underlying tournament <span>\\(\\textrm{Inv}({\\underline{V}}, P)\\)</span> obtained from the transitive tournament <span>\\({\\underline{V}}:=(V, \\{(x,y) \\in V \\times V: x &lt; y \\})\\)</span> by reversing <i>P</i>, i.e., by reversing the arcs (<i>x</i>, <i>y</i>) such that <span>\\(\\{x,y\\} \\in P\\)</span>. The subset <i>P</i> is a pairing (of <span>\\(\\cup P\\)</span>) if <span>\\(|\\cup P| = 2|P|\\)</span>, a quasi-pairing (of <span>\\(\\cup P\\)</span>) if <span>\\(|\\cup P| = 2|P|-1\\)</span>; it is irreducible if no nontrivial interval of <span>\\(\\cup P\\)</span> is a union of connected components of the graph <span>\\((\\cup P, P)\\)</span>. In this paper, we consider pairings and quasi-pairings in relation to tournaments. We establish close relationships between irreducibility of pairings (or quasi-pairings) and indecomposability of their underlying tournaments under modular decomposition. For example, given a pairing <i>P</i> of a totally ordered set <i>V</i> of size at least 6, the pairing <i>P</i> is irreducible if and only if the tournament <span>\\(\\textrm{Inv}({\\underline{V}}, P)\\)</span> is indecomposable. This is a consequence of a more general result characterizing indecomposable tournaments obtained from transitive tournaments by reversing pairings. We obtain analogous results in the case of quasi-pairings.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02803-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We only consider finite structures. With every totally ordered set V and a subset P of \(\left( {\begin{array}{c}V\\ 2\end{array}}\right) \), we associate the underlying tournament \(\textrm{Inv}({\underline{V}}, P)\) obtained from the transitive tournament \({\underline{V}}:=(V, \{(x,y) \in V \times V: x < y \})\) by reversing P, i.e., by reversing the arcs (xy) such that \(\{x,y\} \in P\). The subset P is a pairing (of \(\cup P\)) if \(|\cup P| = 2|P|\), a quasi-pairing (of \(\cup P\)) if \(|\cup P| = 2|P|-1\); it is irreducible if no nontrivial interval of \(\cup P\) is a union of connected components of the graph \((\cup P, P)\). In this paper, we consider pairings and quasi-pairings in relation to tournaments. We establish close relationships between irreducibility of pairings (or quasi-pairings) and indecomposability of their underlying tournaments under modular decomposition. For example, given a pairing P of a totally ordered set V of size at least 6, the pairing P is irreducible if and only if the tournament \(\textrm{Inv}({\underline{V}}, P)\) is indecomposable. This is a consequence of a more general result characterizing indecomposable tournaments obtained from transitive tournaments by reversing pairings. We obtain analogous results in the case of quasi-pairings.

Abstract Image

分享
查看原文
不可还原配对和不可分解锦标赛
我们只考虑有限结构。对于每一个完全有序集合 V 和一个子集 P,我们通过反转 P, i 来关联从传递锦标赛({\underline{V}}:=(V, \{(x,y) \in V \times V: x < y \}))通过反转 P 得到,即e.,通过反转弧(x, y),使得(\{x, y\}\in P\ )。如果 \(|\cup P| = 2|P|\) 子集 P 是(\(\cup P\) 的)配对,如果 \(|\cup P| = 2|P|-1\) 子集 P 是(\(\cup P\) 的)准配对;如果\(\cup P\) 的无非数区间是图\((\cup P, P)\)的连接成分的联合,那么它就是不可还原的。在本文中,我们考虑配对和准配对与锦标赛的关系。我们建立了配对(或准配对)的不可还原性与其底层锦标赛在模块分解下的不可分解性之间的密切关系。例如,给定大小至少为 6 的完全有序集合 V 的配对 P,当且仅当锦标赛 \(\textrm{Inv}({\underline{V}}, P)\)是不可分解的,配对 P 才是不可还原的。这是一个更一般的结果的结果,它描述了通过反转配对从反式锦标赛得到的不可分解锦标赛的特征。我们在准配对的情况下也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信