The Cordiality Game and the Game Cordiality Number

IF 0.6 4区 数学 Q3 MATHEMATICS
Elliot Krop, Aryan Mittal, Michael C. Wigal
{"title":"The Cordiality Game and the Game Cordiality Number","authors":"Elliot Krop, Aryan Mittal, Michael C. Wigal","doi":"10.1007/s00373-024-02798-1","DOIUrl":null,"url":null,"abstract":"<p>The <i>cordiality game</i> is played on a graph <i>G</i> by two players, Admirable (A) and Impish (I), who take turns selecting unlabeled vertices of <i>G</i>. Admirable labels the selected vertices by 0 and Impish by 1, and the resulting label on any edge is the sum modulo 2 of the labels of the vertices incident to that edge. The two players have opposite goals: Admirable attempts to minimize the number of edges with different labels as much as possible while Impish attempts to maximize this number. When both Admirable and Impish play their optimal games, we define the <i>game cordiality number</i>, <span>\\(c_g(G)\\)</span>, as the absolute difference between the number of edges labeled zero and one. Let <span>\\(P_n\\)</span> be the path on <i>n</i> vertices. We show <span>\\(c_g(P_n)\\le \\frac{n-3}{3}\\)</span> when <span>\\(n \\equiv 0 \\pmod 3\\)</span>, <span>\\(c_g(P_n)\\le \\frac{n-1}{3}\\)</span> when <span>\\(n \\equiv 1 \\pmod 3\\)</span>, and <span>\\(c_g(P_n)\\le \\frac{n+1}{3}\\)</span> when <span>\\(n \\equiv 2\\pmod 3\\)</span>. Furthermore, we show a similar bound, <span>\\(c_g(T) \\le \\frac{|T|}{2}\\)</span> holds for any tree <i>T</i>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"27 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02798-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The cordiality game is played on a graph G by two players, Admirable (A) and Impish (I), who take turns selecting unlabeled vertices of G. Admirable labels the selected vertices by 0 and Impish by 1, and the resulting label on any edge is the sum modulo 2 of the labels of the vertices incident to that edge. The two players have opposite goals: Admirable attempts to minimize the number of edges with different labels as much as possible while Impish attempts to maximize this number. When both Admirable and Impish play their optimal games, we define the game cordiality number, \(c_g(G)\), as the absolute difference between the number of edges labeled zero and one. Let \(P_n\) be the path on n vertices. We show \(c_g(P_n)\le \frac{n-3}{3}\) when \(n \equiv 0 \pmod 3\), \(c_g(P_n)\le \frac{n-1}{3}\) when \(n \equiv 1 \pmod 3\), and \(c_g(P_n)\le \frac{n+1}{3}\) when \(n \equiv 2\pmod 3\). Furthermore, we show a similar bound, \(c_g(T) \le \frac{|T|}{2}\) holds for any tree T.

Abstract Image

亲切游戏和游戏亲切号码
亲切度游戏是由两个玩家--"可取的人"(A)和 "不可取的人"(I)--在图 G 上轮流选择图 G 中没有标签的顶点来玩。"可取的人 "会给选择的顶点贴 0 标签,"不可取的人 "会给选择的顶点贴 1 标签,任何一条边上的标签都是这条边上的顶点标签的模乘 2 之和。两位棋手的目标截然相反:Admirable 试图尽可能减少具有不同标签的边的数量,而 Impish 则试图最大化这一数量。当 Admirable 和 Impish 都进行他们的最优博弈时,我们将博弈亲和数 \(c_g(G)\)定义为标签为 0 和 1 的边的绝对数量差。让 \(P_n\) 是 n 个顶点上的路径。我们证明了当(n)为0时,(c_g(P_n)\le \frac{n-3}{3}\); 当(n)为1时,(c_g(P_n)\le \frac{n-1}{3}\); 当(n)为2时,(c_g(P_n)\le \frac{n+1}{3}\)。此外,我们还证明了一个类似的约束,即对于任何树 T,c_g(T) 都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信