Zhaoming Mai , Yingtao Wu , Chenglong Tang , Haibao Mu , Wei Wang , Zuohua Huang
{"title":"Ignition delay time measurements and kinetic modeling for n-dodecane and methane blends at low-to-intermediate temperature conditions","authors":"Zhaoming Mai , Yingtao Wu , Chenglong Tang , Haibao Mu , Wei Wang , Zuohua Huang","doi":"10.1016/j.combustflame.2024.113527","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, novel ignition delay times (IDTs) were experimentally measured for the n-dodecane/methane binary mixture with various n-dodecane content at the range of 5–20 bar and 600–1000 K, utilizing a heated rapid compression machine (RCM). Subsequently, a chemical kinetic model was developed for n-dodecane/methane binary mixture and widely validated by the experimental data including ignition delay times, laminar flame speeds, and speciation evolution in this study and the literature. The present model shows good predictive performance and was further applied in the kinetic analysis of the n-dodecane/methane binary mixture ignition characteristic. The results highlight a significant reactivity-promoting effect on the IDTs with the addition of n-dodecane through the low-temperature oxidation processes. This promoting effect is nonlinear and particularly notable in the NTC region. Additionally, the dilution gas component significantly influences the total IDTs at low-to-intermediate temperature conditions but shows less impact on the first-stage IDTs. The chemical effect of the dilution gas is minor at low-temperature conditions, while the thermodynamic effect plays a more important role in influencing the IDTs of the binary mixture.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024002360","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, novel ignition delay times (IDTs) were experimentally measured for the n-dodecane/methane binary mixture with various n-dodecane content at the range of 5–20 bar and 600–1000 K, utilizing a heated rapid compression machine (RCM). Subsequently, a chemical kinetic model was developed for n-dodecane/methane binary mixture and widely validated by the experimental data including ignition delay times, laminar flame speeds, and speciation evolution in this study and the literature. The present model shows good predictive performance and was further applied in the kinetic analysis of the n-dodecane/methane binary mixture ignition characteristic. The results highlight a significant reactivity-promoting effect on the IDTs with the addition of n-dodecane through the low-temperature oxidation processes. This promoting effect is nonlinear and particularly notable in the NTC region. Additionally, the dilution gas component significantly influences the total IDTs at low-to-intermediate temperature conditions but shows less impact on the first-stage IDTs. The chemical effect of the dilution gas is minor at low-temperature conditions, while the thermodynamic effect plays a more important role in influencing the IDTs of the binary mixture.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.